Skip to main content

Size-dependent top-down control on phytoplankton growth by microzooplankton in eutrophic lakes

Abstract

We hypothesized that the grazing on phytoplankton by the microzooplankton community is size-dependent and, therefore, the top-down control on phytoplankton by microzooplankton community could be one possible mechanism explaining why small phytoplankton become less abundant than large phytoplankton in eutrophic waters. We tested this hypothesis using the dilution method to measure microzooplankton grazing rates and phytoplankton growth rates in the eutrophic waters of the Barataria estuary, southeastern Louisiana. Microzooplankton grazing rates on the slower growing, small phytoplankton (<5 μm) were higher than on the large phytoplankton (>20 μm) which had relatively faster growth rates. The proportional loss of the small, medium, large phytoplankton, and total phytoplankton community by microzooplankton grazing was 44, 53, 0, and 29%, respectively. The relative weakness of top-down grazing control on large phytoplankton by microzooplankton, and the relatively fast growth of large phytoplankton, may be why the average size of phytoplankton, whether isolated cells or colonies, tend to increase in these eutrophic waters and elsewhere.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Abadie, S. W. & M. A. Poirrier, 2000. Increased density of large Rangia clams in Lake Pontchartrain after the cessation of shell dredging. Journal of Shellfish Research 19: 481–485.

    Google Scholar 

  • Bologna, P. A. X., M. L. Fetzer, S. Mcdonnell & E. M. Moody, 2005. Assessing the potential benthic-pelagic coupling in episodic blue mussel (Mytilus edulis) settlement events within eelgrass (Zostera marina) communities. Journal of Experimental Marine Biology and Ecology 316: 117–131.

    Article  Google Scholar 

  • Bricker, S. B., J. G. Ferreira & T. Simas, 2003. An integrated methodology for assessment of estuarine trophic status. Ecological Modelling 169: 39–60.

    CAS  Article  Google Scholar 

  • Bulit, C., C. Diaz-Avalos, M. Signoret & D. J. S. Montagnes, 2003. Spatial structure of planktonic ciliate patches in a tropical coastal lagoon: an application of geostatistical methods. Aquatic Microbial Ecology 30: 185–196.

    Article  Google Scholar 

  • Buskey, E. J., P. A. Montagna, A. F. Amos & T. E. Whitledge, 1997. Disruption of grazer populations as a contributing factor to the initiation of the Texas brown tide algal bloom. Limnology and Oceanography 42: 1215–1222.

    Article  Google Scholar 

  • Calbet, A., 2001. Mesozooplankton grazing effect on primary production: a global comparative analysis in marine ecosystems. Limnology and Oceanography 46: 1824–1830.

    Article  Google Scholar 

  • Calbet, A. & M. R. Landry, 2004. Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnology and Oceanography 49: 51–57.

    CAS  Article  Google Scholar 

  • Calbet, A., J. Felipe, M. Vila, M. M. Sala, M. Alcaraz & M. Estrada, 2003. Relative grazing impact of microzooplankton and mesozooplankton on a bloom of the toxic dinoflagellate Alexandrium minutum. Marine Ecology Progress Series 259: 303–309.

    Article  Google Scholar 

  • Carrick, H. J. & C. L. Schelske, 1997. Have we overlooked the importance of small phytoplankton in productive waters? Limnology and Oceanography 42: 1613–1621.

    CAS  Article  Google Scholar 

  • Cermeño, P., P. Estévez-Blanco, E. Marañón & E. Fernández, 2005. Maximum photosynthetic efficiency of size-fractionated phytoplankton assessed by 14C uptake and fast repetition rate fluorometry. Limnology and Oceanography 50: 1438–1446.

    Article  Google Scholar 

  • Chan, F., M. L. Pace, R. W. Howarth & R. M. Marino, 2004. Bloom formation in heterocystic nitrogen-fixing cyanobacteria: the dependence on colony size and zooplankton grazing. Limnology and Oceanography 49: 2171–2178.

    Article  Google Scholar 

  • Chisholm, S. W., 1992. Phytoplankton size. In Falkowski, P. G. & A. D. Woodhead (eds), Primary Productivity and Biogeochemical Cycles in the Sea. Plenum, New York: 213–237.

    Chapter  Google Scholar 

  • Duarte, C. M. & D. E. Canfield, 1992. Patterns in phytoplankton community structure in Florida lakes. Limnology and Oceanography 37: 155–161.

    Article  Google Scholar 

  • Duarte, C. M., S. Agusti & D. E. Canfield, 1990. Size plasticity of freshwater phytoplankton: implications for community structure. Limnology and Oceanography 35: 1846–1851.

    Article  Google Scholar 

  • Fenchel, T., 1982. Ecology of heterotrophic microflagellates. 4. Quantitative occurrence and importance as bacterial consumers. Marine Ecology Progress Series 9: 35–42.

    Article  Google Scholar 

  • Gallegos, C. L., 1989. Microzooplankton grazing on phytoplankton in the Rhode River, Maryland: nonlinear feeding kinetics. Marine Ecology Progress Series 57: 23–33.

    Article  Google Scholar 

  • Garza-Mourino, G., M. Silva-Briano, S. Nandini, S. S. S. Sarma & M. E. Castellanos-Paez, 2005. Morphological and morphometrical variations of selected rotifer species in response to predation: a seasonal study of selected brachionid species from Lake Xochimilco (Mexico). Hydrobiologia 546: 169–179.

    Article  Google Scholar 

  • Gin, K. Y. H., X. Lin & S. Zhang, 2000. Dynamics and size structure of phytoplankton in the coastal waters of Singapore. Journal of Plankton Research 22: 1465–1484.

    CAS  Article  Google Scholar 

  • Goldman, J. C. & D. A. Caron, 1985. Experimental studies on an omnivorous microflagellate: implications for grazing and nutrient regeneration in the marine microbial food chain. Deep Sea Research 32: 899–915.

    Article  Google Scholar 

  • Haga, H., T. Nagata & M. Sakamoto, 1995. Size-fractionated NH, + regeneration in the pelagic environments of two mesotrophic lakes. Limnology and Oceanography 40: 1091–1099.

    CAS  Article  Google Scholar 

  • Hansen, P. J., P. K. Bjornsen & B. W. Hansen, 1997. Zooplankton grazing and growth: scaling within the 2–2,000-µm body size range. Limnology and Oceanography 42: 687–704.

    Article  Google Scholar 

  • Harris, G. P., 1986. Phytoplankton Ecology: Structure, Function and Fluctuation. Chapman and Hall, New York.

    Book  Google Scholar 

  • Landry, M. R. & R. P. Hassett, 1982. Estimating the grazing impact of marine microzooplankton. Marine Biology 67: 283–288.

    Article  Google Scholar 

  • Landry, M. R., S. L. Brown & L. Campbell, 1998. Spatial patterns in phytoplankton growth and microzooplankton grazing in the Arabian Sea during monsoon forcing. Deep Sea Research II 45: 2353–2368.

    CAS  Article  Google Scholar 

  • Legendre, L., M. Gosselin, H. J. Hirche, G. Kattner & G. Rosenberg, 1993. Environmental control and potential fate of size-fractionated phytoplankton production in the Greenland Sea (75 degrees-N). Marine Ecology Progress Series 98: 297–313.

    Article  Google Scholar 

  • Lionard, M., F. Azemar, S. Bouletreau, K. Muylaert, M. Tackx & W. Vyverman, 2005. Grazing by meso- and microzooplankton on phytoplankton in the upper reaches of the Schelde estuary (Belgium/The Netherlands). Estuarine, Coastal and Shelf Science 64: 764–774.

    Article  Google Scholar 

  • Liu, H. & M. J. Dagg, 2003. Interactions between nutrients, phytoplankton growth, and micro- and mesozooplankton grazing in the plume of the Mississippi River. Marine Ecology Progress Series 258: 31–42.

    CAS  Article  Google Scholar 

  • Liu, X., C. H. Tang & C. K. Wong, 2014. Microzooplankton grazing and selective feeding during bloom periods in the Tolo Harbour area as revealed by HPLC pigment analysis. Journal of Sea research 90: 83–94.

    Article  Google Scholar 

  • Mouw, C. B. & J. A. Yoder, 2005. Primary production calculations in the Mid-Atlantic Bight, including effects of phytoplankton community size structure. Limnology and Oceanography 50: 1232–1243.

    CAS  Article  Google Scholar 

  • Murrell, M. C. & J. T. Hollibaugh, 1998. Microzooplankton grazing in northern San Francisco Bay measured by the dilution method. Aquatic Microbial Ecology 15: 53–63.

    Article  Google Scholar 

  • Nejstgaard, J. C., L.-J. Naustvoll & A. Sazhin, 2001. Correcting for underestimation of microzooplankton grazing in bottle incubation experiments with mesozooplankton. Marine Ecology Progress Series 221: 59–75.

    Article  Google Scholar 

  • Odate, T., 1996. Abundance and size composition of the summer phytoplankton community structure in the northern North Pacific Ocean, the Bering Sea, and the Gulf of Alaska. Journal of Oceanography 52: 335–351.

    CAS  Article  Google Scholar 

  • Pagano, M. & L. Saintjean, 1989. Comparison of 2 techniques for sampling zooplankton, the net and the schindler trap, tested at Ebrie Lagoon (Ivory coast). Hydrobiologia 173: 167–172.

    Article  Google Scholar 

  • Rabalais, N. N., 2005. Consequences of Mississippi River diversions for Louisiana coastal restoration. National Wetlands Newsletter 27: 21–24.

    Google Scholar 

  • Raven, J. A., 1998. The twelfth Tansley lecture. Small is beautiful: the picophytoplankton. Functional Ecology 12: 503–513.

    Article  Google Scholar 

  • Redden, A., B. Sanderson & D. Rissik, 2002. Extending the analysis of the dilution method to obtain the phytoplankton concentration at which microzooplankton grazing becomes saturated. Marine Ecology Progress Series 226: 27–33.

    Article  Google Scholar 

  • Ren, L., N. N. Rabalais, R. E. Turner, W. Morrison & W. Mendenhall, 2009. Nutrient limitation on phytoplankton growth in the Upper Barataria Basin, Louisiana: microcosm bioassays. Estuaries and Coasts 32: 958–974.

    CAS  Article  Google Scholar 

  • Sellner, K. G., D. C. Brownlee, M. H. Bundy, S. G. Brownlee & K. R. Braun, 1993. Zooplankton grazing in a Potomac River cyanobacteria bloom. Estuaries 16: 859–872.

    Article  Google Scholar 

  • Sherr, B. F. & E. B. Sherr, 1984. Role of heterotrophic protozoa in carbon and energy flow in aquatic ecosystems. In Klug, M. J. & C. A. Reddy (eds), Current Perspectives in Microbial Ecology. American Society for Microbiology, Washington, DC: 412–423.

    Google Scholar 

  • Stone, J. H., N. A. Drummond, L. L. Cook, E. C. Theriot & D. M. Lindstedt, 1980. The distribution and abundance of plankton of Lake Pontchartrain, Louisiana, 1978. In Stone, J. H. (ed.), Environmental Analysis of Lake Pontchartrain, Louisiana, Its Surrounding Wetlands, and Selected Land Uses. Coastal Ecology Laboratory, Center For Wetland Resources, Louisiana State University, Baton Rouge: 437–591.

    Google Scholar 

  • Strom, S. L., M. A. Brainard, J. L. Holmes & M. B. Olson, 2001. Phytoplankton blooms are strongly impacted by microzooplankton grazing in coastal North Pacific waters. Marine Biology 138: 355–368.

    CAS  Article  Google Scholar 

  • Tamigneaux, E., L. Legendre, B. Klein & M. Mingelbier, 1999. Seasonal dynamics and potential fate of size-fractionated phytoplankton in a temperate nearshore environment (Western Gulf of St Lawrence, Canada). Estuarine Coastal Shelf Science 48: 253–269.

    CAS  Article  Google Scholar 

  • Thatcher, S. J., C. C. Davis & G. A. Gardner, 1993. Physical and chemical effects of macrograzers and micrograzers on enclosed, in situ phytoplankton in a Nefoundland Lake. Hydrobiologia 250: 127–141.

    Article  Google Scholar 

  • Watson, S. & J. Kalff, 1981. Relationships between nannoplankton and lake trophic status. Canadian Journal of Fisheries and Aquatic Sciences 38: 960–967.

    Article  Google Scholar 

  • Wong, W. H., N. N. Rabalais & R. E. Turner, 2010. Ecological significance of the clam Rangia cuneata (woersby, 1831) in upper Barataria estuary, Louisiana. Hydrobiologia 651: 305–315.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Oceanic and Atmospheric Administration, Center for Sponsored Coastal Ocean Research, Grants Nos. NA16OP2670 to LSU and NA16OP2671 to LUMCON. We thank A. Sapp, K. Reynolds, W. Morrison, and L. Ren for their field assistance. We thank H. B. Liu for helpful comments on the experimental design.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wai Hing Wong.

Additional information

Handling editor: Zhengwen Liu

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wong, W.H., Rabalais, N.N. & Turner, R.E. Size-dependent top-down control on phytoplankton growth by microzooplankton in eutrophic lakes. Hydrobiologia 763, 97–108 (2016). https://doi.org/10.1007/s10750-015-2365-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2365-3

Keywords

  • Microzooplankton
  • Grazing
  • Phytoplankton growth
  • Eutrophication