Advertisement

Hydrobiologia

, Volume 761, Issue 1, pp 373–396 | Cite as

Cytogenetic diversity of notothenioid fish from the Ross sea: historical overview and updates

  • Laura Ghigliotti
  • Christina C.-H. Cheng
  • Catherine Ozouf-Costaz
  • Marino Vacchi
  • Eva Pisano
BIOLOGY OF THE ROSS SEA

Abstract

Cytogenetics provides a unique platform to study in situ structural, functional, and evolutionary aspects of the genome. As such it holds powerful promise in decoding mechanisms and processes of genome architectural changes and their role in organism’s diversification and evolution. Since the early 80s, such an approach has been applied to the study of the Antarctic notothenioid fishes. In almost three decades, the cytogenetic information has expanded to cover half of the known species inhabiting the high Antarctic waters. Although started 10 years later, cytogenetic studies of species from the Ross sea region have provided valuable contributions to this bulk of knowledge. Here, we synthesize the currently available cytogenetic information on Antarctic notothenioid fishes from the Ross Sea Region, inclusive of both conventional karyotyping and gene mapping. In addition, new karyotypic data on four species (Lepidonotothen squamifrons, Trematomus scotti, T. loennbergii, and T. lepidorhinus) are provided. In discussing these data, specific focus is made on the patterns and subtleties of cytogenetic diversity at inter- and intra-specific levels aiming at contributing to the refinement of the knowledge of fish diversity in a region, the Ross Sea area, whose primary ecological value is widely recognized.

Keywords

Antarctic fish Chromosomes gene mapping Karyotype 

Notes

Acknowledgments

The study was supported by the Italian National Programme for Antarctic Research (PNRA) project 2013.AZ 1.11 and contributes to the SCAR Scientific Research Program AnT-ERA (Antarctic Thresholds—Ecosystem Resilience and Adaptation). We thank the Italian National Research Program (PNRA) for funding and logistic support during the italian scientific expeditions, the New Zealand Ministry of Fisheries and the National Institute of Water & Atmospheric Research (NIWA) for covering the logistic costs of the RV Tangaroa Cruise 2004, and the US NSF Office of Polar Programs (OPP 0231006 to C.-H.C.C.) for support to C.-H.C.C. and LG in the sampling at McMurdo Station in 2004.

References

  1. Arai, R., 2011. Fish Karyotypes: A Check List. Springer, Tokyo.CrossRefGoogle Scholar
  2. Ballard, G., D. Jongsomjit, S. D. Veloz & D. G. Ainley, 2012. Coexistence of mesopredators in an intact polar ocean ecosystem: the basis for defining a Ross Sea marine protected area. Biological Conservation 156: 72–82.CrossRefGoogle Scholar
  3. Balushkin, A. V., 1994. Proeleginops grandeastmanorum gen. et sp. nov. (Perciformes, Notothenioidei, Eleginopsidae) from the Late Eocene of Seymour Island (Antarctica) is a fossil notothenioid, not a gadiform fish. Journal of Ichthyology 34: 10–23.Google Scholar
  4. Balushkin, A. V., 2000. Morphology, classification, and evolution of Notothenioid Fishes of the Southern Ocean (Notothenioidei, Perciformes). Journal of Ichthyology 40: S74–S109.Google Scholar
  5. Balushkin, A. V. & V. V. Spodareva, 2013. Dwarf toad plunderfish Pogonophryne minor sp. n. (Artedidraconidae; Nototheniodei; Perciformes)—a new species and one of the smallest species of autochthonous ichthyofauna of marginal seas of the Antarctic continent. Journal of Ichthyology 53: 1–6.CrossRefGoogle Scholar
  6. Belkadi, L., J.-P. Coutanceau, C. Bonillo, P. Graça, A. Dettaï, C. Ozouf-Costaz & D. Higuet, 2014. Burst of retrotransposons and extensive chromosomal repatterning within the Antarctic teleost fish species flock Trematominae. Chromosome Research 22: 393–437.CrossRefGoogle Scholar
  7. Bernardi, G. & U. Goswami, 1997. Molecular evidence for cryptic species among the Antarctic fish Trematomus bernacchii and Trematomus hansoni. Antarctic Science 9: 381–385.CrossRefGoogle Scholar
  8. Capriglione, T., G. Odierna, V. Caputo, A. Canapa & E. Olmo, 2002. Characterization of a Tc1-like transposon in the Antarctic ice-fish, Chionodraco hamatus. Gene 295: 193–198.CrossRefPubMedGoogle Scholar
  9. Caputo, V., P. Nisi Cerioni, A. Splendiani, T. Capriglione, G. Odierna & E. Olmo, 2002. Chromosomal studies on ten species of notothenioid fishes (Notothenioidei, Bathydraconidae, Channichthyidae, Nototheniidae). Cytogenetics and Genome Research 98: 285–290.CrossRefPubMedGoogle Scholar
  10. Caputo, V., A. Splendiani, P. Nisi Cerioni & E. Olmo, 2003. The chromosomal complement of the artedidraconid fish Histiodraco velifer (Perciformes, Notothenioidei) from Terra Nova Bay, Ross Sea. Cytogenetics and Genome Research 101: 29–32.CrossRefPubMedGoogle Scholar
  11. Causse, R., C. Ozouf-Costaz, P. Koubbi, D. Lamy, M. Eleaume, et al., 2011. Demersal ichthyofauna from the Dumont d’Urville Sea (East Antarctica) during the CEAMARC surveys in 2007–2008. Polar Science 5: 272–285.CrossRefGoogle Scholar
  12. Chen, L., A. L. DeVries & C. H. C. Cheng, 1997. Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish. Proceedings of the National Academy of Sciences U.S.A. 94: 3811–3816.Google Scholar
  13. Chen Z., C.-H. C. Cheng, J. Zhang, L. Cao, L. Chen, L. Zhou, Y. Jin, H. Ye, C. Deng, Z. Dai, Q. Xu, P. Hu, S. Sun, Y. Shen & L. Chen, 2008. Transcriptomic and genomic evolution under constant cold in Antarctic notothenioid fish. Proceedings of the National Academy of Sciences U.S.A. 103: 10491–10496.Google Scholar
  14. Cheng, C. H. C. & H. W. Detrich III, 2007. Molecular ecophysiology of Antarctic notothenioid fishes. Philosophical Transactions of the Royal Society B: Biological Sciences 362: 2215–2232.CrossRefGoogle Scholar
  15. Clarke, A. & I. A. Johnston, 1996. Evolution and adaptive radiation of Antarctic fishes. Trends in Ecology & Evolution 11: 212–218.CrossRefGoogle Scholar
  16. Cocca, E., M. Ratnayake-Lecamwasam, S. K. Parker, L. Camardella, M. Ciaramella, G. di Prisco & H. W. Detrich, 1995. Genomic remnants of alpha-globin genes in the hemoglobinless antarctic icefishes. Proceedings of the National Academy of Sciences U.S.A. 92: 1817–1821.Google Scholar
  17. Cocca, E., S. D. Iorio & T. Capriglione, 2011. Identification of a novel helitron transposon in the genome of Antarctic fish. Molecular Phylogenetics and Evolution 58: 439–446.CrossRefPubMedGoogle Scholar
  18. Coxall, H. K., P. A. Wilson, H. Pälike, C. H. Lear & J. Backman, 2005. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature 433: 3–57.CrossRefGoogle Scholar
  19. De Broyer, C., P. Koubbi, H. Griffiths, B. Raymond, C. D. Udekem d’Acoz, A. Van de Putte, et al., 2014. Biogeographic Atlas of the Southern Ocean. SCAR, Cambridge.Google Scholar
  20. Detrich III, H. W., S. K. Parker, R. C. J. Williams, E. Nogales & K. H. Downing, 2000. Cold adaptation of microtubule assembly and dynamics. Structural interpretation of primary sequence changes present in the alpha and beta-tubulins of Antarctic fishes. The Journal of Biological Chemistry 275: 37038–37047.CrossRefPubMedGoogle Scholar
  21. Dettai, A., M. Berkani, A. C. Lautredou, A. Couloux, G. Lecointre, C. Ozouf-Costaz & C. Gallut, 2012. Tracking the elusive monophyly of nototheniid fishes (Teleostei) with multiple mitochondrial and nuclear markers. Marine Genomics 8: 49–58.CrossRefPubMedGoogle Scholar
  22. DeVries, A. L., 1971. Glycoproteins as biological antifreeze agents in Antarctic fishes. Science 172: 1152–1155.CrossRefPubMedGoogle Scholar
  23. DeVries, A. L. & C.-H. C. Cheng, 2005. Antifreeze proteins and organismal freezing avoidance in polar fishes. In Farrell, A. P. & J. F. Steffensen (eds.), The Physiology of Polar Fishes. Elsevier Academic Press, San Diego: 155–201.CrossRefGoogle Scholar
  24. DeWitt, H. H., P. C. Heemstra & O. Gon, 1993. Nototheniidae. In Gon, O. & P. C. Heemstra (eds.), Fishes of the Southern Ocean. J. L. B. Smith Institute of Ichthyology, Grahamstown: 279–399.Google Scholar
  25. Doussau De Bazignan, M. & C. Ozouf-Costaz, 1985. Une technique rapide d’analyse chromosomique appliquée à sept espéces de poissons antarctiques. Cybium 9: 5–74.Google Scholar
  26. Duhamel, G., P. A. Hulley, R. Causse, P. Koubbi, M. Vacchi, P. Pruvost, et al., 2014. Biogeographic patterns of fish. Biogeographic Atlas of the Southern Ocean 7: 327–362.Google Scholar
  27. Eastman, J. T., 2005. The nature of the diversity of Antarctic fishes. Polar Biology 28: 93–107.CrossRefGoogle Scholar
  28. Eastman, J. T. & E. Barrera-Oro, 2010. Buoyancy studies of three morphs of the Antarctic fish Trematomus newnesi (Nototheniidae) from the South Shetland Islands. Polar Biology 33: 823–831.CrossRefGoogle Scholar
  29. Eastman, J. T. & R. R. Eakin, 2014. Notothenioid species list. (http://www.oucom.ohiou.edu/dbms-eastman). Accessed 11 Dec 2014.
  30. Eastman, J. T. & G. Hubold, 1999. The fish fauna of the Ross Sea, Antarctica. Antarctic Science 11: 293–304.Google Scholar
  31. Eastman, J. T. & A. R. McCune, 2000. Fishes on the Antarctic continental shelf: evolution of amarine species flock? Journal of Fish Biology 57: 84–102.Google Scholar
  32. Ekau, W. & J. Gutt, 1991. Notothenioid fishes from the Weddell Sea and their habitat, observed by underwater photography and television. Polar Biology 4: 36–49.Google Scholar
  33. Galetti Jr, P. M., W. F. Molina, P. R. A. M. Affonso & C. T. Aguilar, 2006. Assessing genetic diversity of Brazilian reef fishes by chromosomal and DNA markers. Genetica 126: 161–177.CrossRefPubMedGoogle Scholar
  34. Ghigliotti, L., F. Mazzei, C. Ozouf-Costaz, C. Bonillo, R. Williams, C. H. C. Cheng & E. Pisano, 2007. The two giant sister species of the Southern Ocean, Dissostichus eleginoides and Dissostichus mawsoni, differ in karyotype and chromosomal pattern of ribosomal RNA genes. Polar Biology 30: 625–634.CrossRefGoogle Scholar
  35. Ghigliotti, L., T. J. Near, S. Ferrando, M. Vacchi & E. Pisano, 2010. Cytogenetic diversity in the Antarctic plunderfishes (Notothenioidei: Artedidraconidae). Antarctic Science 22: 805–814.CrossRefGoogle Scholar
  36. Ghigliotti, L., C.-H. C. Cheng, C. Bonillo, J.-P. Coutanceau & E. Pisano, 2013. In situ gene mapping of two genes supports independent evolution of sex chromosomes in cold-adapted Antarctic fish. BioMed Research International. doi: 10.1155/2013/243938 PubMedCentralPubMedGoogle Scholar
  37. Ghigliotti, L., C. H. C. Cheng & E. Pisano, 2014. Sex determination in Antarctic notothenioid fish: chromosomal clues and evolutionary hypotheses. Polar Biology. doi: 10.1007/s00300-014-1601-z Google Scholar
  38. Gornung, E., 2013. Twenty years of physical mapping of major ribosomal RNA genes across the teleosts: a review of research. Cytogenetic and Genome Research 141: 90–102.PubMedGoogle Scholar
  39. Hanchet, S. M., A. L. Stewart, P. J. McMillan, M. R. Clark, R. L. O’Driscoll & M. L. Stevenson, 2013. Diversity, relative abundance, new locality records, and updated fish fauna of the Ross Sea region. Antarctic Science 25: 619–636.CrossRefGoogle Scholar
  40. Hureau, J. C. & A. Tomo, 1977. Bovichthys elongatus n. sp., poisson Bovichthyidae, famille nouvelle pour L’Antarctique. Cybium 1: 67–74. (In French).Google Scholar
  41. Kiss, A. J., A. Y. Mirarefi, S. Ramakrishnan, C. Zukoski, A. L. DeVries & C.-H. C. Cheng, 2004. Cold stable eye lens crystallins of the Antarctic nototheniid toothfish Dissostichus mawsoni (Norman). Journal of Experimental Biology 207: 4633–4649.CrossRefPubMedGoogle Scholar
  42. Kuhn, K. L. & T. J. Near, 2009. Phylogeny of Trematomus (Notothenioidei: Nototheniidae) inferred from mitochondrial and nuclear gene sequences. Antarctic Science 21: 565–570.CrossRefGoogle Scholar
  43. La Mesa, M., J. T. Eastman & M. Vacchi, 2004. The role of notothenioid fish in the food web of the Ross Sea shelf waters: a review. Polar Biology 27: 321–338.CrossRefGoogle Scholar
  44. Lautrédou, A. C., C. Bonillo, G. Denys, C. Cruaud, C. Ozouf-Costaz, G. Lecointre & A. Dettai, 2010. Molecular taxonomy and identification within the Antarctic genus Trematomus (Notothenioidei, Teleostei): how valuable is barcoding with COI? Polar Science 4: 333–352.CrossRefGoogle Scholar
  45. Lautrédou, A.-C., D. D. Hinsinger, C. Gallut, C. H. C. Cheng, M. Berkani, C. Ozouf-Costaz, C. Cruaud, G. Lecointre & A. Dettaï, 2012. Phylogenetic footprints of an Antarctic radiation: the Trematominae (Notothenioidei, Teleostei). Molecular Phylogenetics and Evolution 65: 87–101.CrossRefPubMedGoogle Scholar
  46. Lecointre, G., N. Améziane, M. C. Boisselier, C. Bonillo, F. Busson, R. Causse, et al., 2013. Is the species flock concept operational?. The Antarctic shelf case. PloS One 8: e68787.PubMedCentralCrossRefPubMedGoogle Scholar
  47. Levan, A., K. Fredga & H. A. Sandberg, 1964. Nomenclature for centromeric position on chromosomes. Hereditas 52: 201–220.CrossRefGoogle Scholar
  48. Logue, J. A., A. L. De Vries, E. Fodor & A. R. Cossins, 2000. Lipid compositional correlates of temperature-adaptive interspecific differences in membrane physical structure. Journal of Experimental Biology 203: 2105–2115.PubMedGoogle Scholar
  49. Matschiner, M., R. Hanel & W. Salzburger, 2011. On the origin and trigger of the Notothenioid adaptive radiation. PLoS One 6: e18911.PubMedCentralCrossRefPubMedGoogle Scholar
  50. Mazzei, F., L. Ghigliotti, C. Bonill, J.-P. Coutanceau, C. Ozouf-Costaz & E. Pisano, 2004. Chromosomal patterns of major and 5S ribosomal DNA in six icefish species (Perciformes, Notothenioidei, Channichthyidae). Polar Biology 28: 47–55.Google Scholar
  51. Mazzei, F., L. Ghigliotti, G. Lecointre, C. Ozouf-Costaz, J.-P. Coutanceau, H. W. IDetrich III & E. Pisano, 2006. Karyotypes of basal lineages in notothenioid fishes: the genus Bovichtus. Polar Biology 29: 1071–1076.CrossRefGoogle Scholar
  52. Mitchell, J. & M. Clark, 2004. Voyage Report Tan04–02. Western Ross Sea Voyage 2004. Hydrographic and biodiversity survey of the RV Tangaroa, 27 Jan–13 March 2004. Cape Adare, Cape Hallet, Possession Island and Balleny Islands, Antarctica. National Institute of Water and Atmospheric Research (NIWA) Publication, Wellington, 1–102.Google Scholar
  53. Molina, W. F., P. A. Martinez, L. A. C. Bertollo & C. J. Bidau, 2014. Evidence of meiotic drive as an explanation for karyotype changes in fishes. Marine Genomics 15: 29–34.CrossRefPubMedGoogle Scholar
  54. Morescalchi, A., E. Pisano, R. Stanyon & M. A. Morescalchi, 1992a. Cytotaxonomy of Antarctic teleosts of the Pagothenia/Trematomus complex (Nototheniidae, Perciformes). Polar Biology 12: 553–558.CrossRefGoogle Scholar
  55. Morescalchi, A., J. C. Hureau, E. Olmo, C. Ozouf-Costaz, E. Pisano & R. Stanyon, 1992b. A multiple sex-chromosome system in Antarctic ice-fishes. Polar Biology 11: 655–661.CrossRefGoogle Scholar
  56. Morescalchi, A., M. A. Morescalchi, G. Odierna, V. Stingo & T. Capriglione, 1996. Karyotype and genome size of zoarcids and notothenioids (Teleostei, Perciformes) from the Ross Sea: cytotaxonomic implications. Polar Biology 16: 559–564.CrossRefGoogle Scholar
  57. Near, T. J., 2004. Estimating divergence times of notothenioid fishes using a fossil-calibrated molecular clock. Antarctic Science 16: 37–44.CrossRefGoogle Scholar
  58. Near, T. J., J. J. Pesavento & C. H. C. Cheng, 2004. Phylogenetic investigations of Antarctic notothenioid fishes (Perciformes: Notothenioidei) using complete gene sequences of the mitochondrial encoded 16S rRNA. Molecular Phylogenetics and Evolution 32: 881–891.CrossRefPubMedGoogle Scholar
  59. Near, T. J., A. Dornburg, K. L. Kuhn, J. T. Eastman, J. N. Pennington, T. Patarnello, L. Zane, D. A. Fernàndez & C. D. Jones, 2012. Ancient climate change, antifreeze, and the evolutionary diversification of Antarctic fishes. Proceedings of the National Academy of Sciences U.S.A. 109: 3434–3439.Google Scholar
  60. Negrisolo, E., L. Bargelloni, T. Patarnello, C. Ozouf-Costaz, E. Pisano, G. di Prisco & C. Verde, 2008. Comparative and evolutionary genomics of globin genes in Fish. Methods in Enzymology 436: 511–538.CrossRefPubMedGoogle Scholar
  61. Nicodemus-Johnson, J., S. Silic, L. Ghigliotti, E. Pisano & C.-H. C. Cheng, 2011. Assembly of the antifreeze glycoprotein/trypsinogen-like protease genomic locus in the Antarctic fish Dissostichus mawsoni (Norman). Genomics 98: 194–201.CrossRefPubMedGoogle Scholar
  62. Ozouf-Costaz, C., 1987. Karyotypes of Chaenodraco wilsoni and Chionodraco myersi (Channichthyidae) from Prydz Bay, Antarctica. Copeia 1987: 503–505.CrossRefGoogle Scholar
  63. Ozouf-Costaz, C. & M. Doussau De Bazignan, 1987. Chromosome relationships among 15 species of Nototheniidae. Proceedings of 5th Congress Europe Ichthyiologists, pp 413–419.Google Scholar
  64. Ozouf-Costaz, C., J. C. Hureau & M. Beaunier, 1991. Chromosome studies on fish of the suborder Notothenioidei collected in the Weddel sea during Epos 3 cruise. Cybium 15: 271–289.Google Scholar
  65. Ozouf-Costaz, C., E. Pisano, C. Bonillo & R. Williams, 1996. Ribosomal DNA location in the Antarctic fish Champsocephalus gunnari (Notothenioidei, Channichthyidae) using banding and fish techniques. Chromosome Research 4: 557–561.CrossRefPubMedGoogle Scholar
  66. Ozouf-Costaz, C., E. Pisano, C. Thaeron & J.-C. Hureau, 1997. Antarctic fish chromosome banding: significance for evolutionary studies. Cybium 21: 399–409.Google Scholar
  67. Ozouf-Costaz C., E. Pisano, C. Thaeron & J. C. Hureau, 1999. Karyological survey of the Notothenioid fish occuring in Adelie Land (Antarctica). In Séret, B. & J. Y. Sire (eds) Proceedings of the 5th Indo-Pacific Fish Conference, Nouméa 1997. Societé francaise d’Ichthyologie, Paris, 427–440.Google Scholar
  68. Ozouf-Costaz, C., J. Brandt, C. Koerting, E. Pisano, C. Bonillo, J. P. Coutanceau & J. N. Volff, 2004. Genome dynamics and chromosomal localization of the non-LTR retrotransposons Rex1 and Rex3 in Antarctic fish. Antarctic Science 16: 51–57.CrossRefGoogle Scholar
  69. Ozouf-Costaz, C., E. Pisano, F. Foresti & L. Foresti de Almeida Toledo, 2015. Fish cytogenetic techniques: Ray-Fin fishes and chondrichthyans. CRC Press, Taylor & Francis Group, London.CrossRefGoogle Scholar
  70. Phan, V. N., V. Gomes & H. Suzuki, 1986. Extudos citogenéticos de peixes Antàrticos. I. Cariòtipos de Notothenia gibberifrons (Lönnberg 1905), Trematomus bernacchii (Boulenger, 1902) e T. hansoni (Boulenger, 1902) (Perciformes, Nototheniidae). Anais de Academia Brasileira Ciencias 58: 23–27.Google Scholar
  71. Phan, V. N., V. Gomes, H. Suzuki & M. J. A. C. Rocha Passos, 1987. Karyotypes of two Antarctic fishes, Notothenia gibberifrons and Notothenia coriiceps neglecta. Japan Journal of Ichthyiology 33: 384–387.Google Scholar
  72. Piacentino, G. L. M. & E. Barrera-Oro, 2009. Phenotypic plasticity in the Antarctic fish Trematomus newnesi (Nototheniidae) from the South Shetland Islands. Polar Biology 32: 1407–1413.CrossRefGoogle Scholar
  73. Pisano, E. & C. Ozouf-Costaz, 2000. Chromosome change and the evolution in the Antarctic fish suborder Notothenioidei. Antarctic Science 12: 334–342.CrossRefGoogle Scholar
  74. Pisano, E. & C. Ozouf-Costaz, 2003. Cytogenetics and evolution in extreme environment: the case of Antarctic fishes. In Val, A. & G. Kapoor (eds.), Fish Adaptations. Science Publishers Inc., Enfield: 209–330.Google Scholar
  75. Pisano, E. & L. Ghigliotti, 2009. Ribosomal genes in notothenioid fishes: focus on the chromosomal organisation. Marine Genomics 2: 75–80.CrossRefPubMedGoogle Scholar
  76. Pisano, E., C. Ozouf-Costa, C. Bonillo, A. Caimo, S. Rossetti & R. Williams, 1997. Cytogenetics of the Antarctic icefish Champsocephalus gunnari Lonnberg, 1905 (Channichthydae, Notothenioidei). Comparative Biochemistry and Physiology (part A) 118: 1087–1094.CrossRefGoogle Scholar
  77. Pisano, E., C. Angelini, F. Mazzei & R. Stanyon, 2000. Adaptive radiation in Antarctic notothenioid fish: studies of genomic change at chromosomal level. Italian Journal of Zoology 67: 115–121.CrossRefGoogle Scholar
  78. Pisano, E., F. Mazzei, N. Derome, C. Ozouf-Costaz, J. C. Hureau & G. di Prisco, 2001. Cytogenetics of the bathydraconid fish Gymnodraco acuticeps (Perciformes, Notothenioidei) from Terra Nova Bay, Ross Sea. Polar Biology 24: 846–852.CrossRefGoogle Scholar
  79. Pisano, E., E. Cocca, F. Mazzei, L. Ghigliotti, G. di Prisco, H. W. I. I. I. Detrich & C. Ozouf-Costaz, 2003. Mapping of α-and β-globin genes on antarctic fish chromosomes by fluorescence in situ hybridization. Chromosome Research 11: 633–640.CrossRefPubMedGoogle Scholar
  80. Pisano, E., M. R. Coscia, F. Mazzei, L. Ghigliotti, J. P. Coutanceau, C. Ozouf-Costaz & U. Oreste, 2007. Cytogenetic mapping of immunoglobulin heavy chain genes in Antarctic fish. Genetica 130: 9–17.CrossRefPubMedGoogle Scholar
  81. Pisano, E., L. Ghigliotti, F. Mazzei, J.-C. Hureau, C. Bonillo, R. Williams & C. Ozouf-Costaz, 2011. The contribution of the Aurora Australis “THIRST” voyage (Heard Island, Austral winter 1993) to the cytogenetics of Antarctic fish. In Duhamel, G. & D. Welsford (eds.), The Kergueleen Plateau: marine ecosystem and fisheries. French Society of Ichthyology, Paris: 122–123.Google Scholar
  82. Prirodina, V. P., 1984. Karyotypes of three species of the notothenioid fishes. Biologiya Moryia, Vladivostok 3: 74–76.Google Scholar
  83. Prirodina, V. P., 1989. New karyological data on three species of whiteblooded fishes (Notothenioidei, Channichthyidae). Proceedings of the Zoological Institute of the USSR Academy of Science 201: 66–71 (in Russian).Google Scholar
  84. Prirodina, V. P., 1990. Karyotypes of three species of the family Bathydraconidae from the west Antarctic with notes on its karyotypic diversity. Proceedings of the Zoological Institute of the Leningrad 222: 55–63 (in Russian).Google Scholar
  85. Prirodina, V. P. & A. V. Neyelov, 1984. Karyotypes in two species of the genus Notothenia s. str. (fam. Nototheniidae) from the West Antarctica. Trudy of the Zoological Institute 127: 32–37.Google Scholar
  86. Prirodina, V. P. & C. Ozouf-Costaz, 1995. Description of karyotypes of species of Harpagifer (Harpagiferidae, Notothenioidei) from the South Orkney Islands and Macquarie Island. Journal of Ichthyiology 35: 341–344.Google Scholar
  87. Pugliatti T. & M. C. Ramorino, 1999. Rapporto sulla Campagna Antartica. Estate Australe 1998–99. Quattordicesima Spedizione. ENEA Progetto Antartide, Roma, pp 49–50 (in Italian).Google Scholar
  88. Ramorino M. C., 2004. Rapporto sulla Campagna Antartica. Estate Australe 2003–04. Diciannovesima Spedizione. Consorzio per l’attuazione del Programma Nazionale di Ricerche in Antartide, Roma, pp 173–270 (in Italian).Google Scholar
  89. Rey, O., A. d’Hont, J.-P. Coutanceau, E. Pisano, S. Chilmonczyk & C. Ozouf-Costaz, 2015. Cephalic kidney and spleen cell culture in Antarctic teleosts. In Ozouf-Costaz, C., E. Pisano, F. Foresti & L. Foresti de Almeida Toledo (eds.), Fish cytogenetic techniques. Ray-Fin fishes and chondrichthyans, CRC Press, Taylor & Francis Group, London: 74–81.Google Scholar
  90. Rutschmann, S., M. Matschiner, M. Damerau, M. Muschick, M. F. Lehmann, R. Hanel & W. Salzburger, 2011. Parallel ecological diversification in Antarctic notothenioid fishes as evidence for adaptive radiation. Molecular Ecology 20: 4707–4721.CrossRefPubMedGoogle Scholar
  91. Sanchez, S., A. Dettaï, C. Bonillo, C. Ozouf-Costaz, W. H. Detrich III & G. Lecointre, 2007. Molecular and morphological phylogenies of the Nototheniidae, with a taxonomic focus on the Trematominae. Polar Biology 30: 155–166.CrossRefGoogle Scholar
  92. Schneider, C. H., M. C. Gross, M. L. Terencio, E. J. do Carmo, C. Martins & E. Feldberg, 2013. Evolutionary dynamics of retrotransposable elements Rex1, Rex3 and Rex6 in neotropical cichlid genomes. BMC Evolutionary Biology 13: 152.PubMedCentralCrossRefPubMedGoogle Scholar
  93. Shandikov, G. A. & R. R. Eakin, 2013. Pogonophryne neyelovi, a new species of Antarctic short-barbeled plunderfish (Perciformes, Notothenioidei, Artedidraconidae) from the deep Ross Sea. ZooKeys 296: 59–77.CrossRefPubMedGoogle Scholar
  94. Speicher, M. R. & N. P. Carter, 2005. The new cytogenetics: blurring the boundaries with molecular biology. Nature Reviews Genetics 6: 782–792.CrossRefPubMedGoogle Scholar
  95. Strasburg, J. L., C. Scotti-Saintagne, I. Scotti, Z. Lai & L. H. Rieseberg, 2009. Genomic patterns of adaptive divergence between chromosomally differentiated sunflower species. Molecular Biology and Evolution 26: 1341–1355.PubMedCentralCrossRefPubMedGoogle Scholar
  96. The Tree of Sex Consortium, 2014. Tree of sex: A database of sexual systems. Scientific Data 1: 140015.Google Scholar
  97. Tomaszkiewicz, M., M. Hautecoeur, J.-P. Coutanceau, C. Bonillo, A. Dettaï, F. Mazzei, et al., 2011. Comparative cytogenetic studies of the Nototheniidae (Teleostei: Acanthomorpha) from the Indian (Kerguelen-Heard Plateau) and Atlantic (South Georgia, South Sandwich, Falkland/Malvinas, Bouvet Islands) sectors of the Southern Ocean. In Duhamel, G. & D. Welsford (eds.), The Kergueleen Plateau: marine ecosystem and fisheries. Société française d’ichtyologie, Paris: 109–121.Google Scholar
  98. White, M. J. D., 1978. Models of Speciation. Freeman, San Francisco.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Laura Ghigliotti
    • 1
  • Christina C.-H. Cheng
    • 2
  • Catherine Ozouf-Costaz
    • 3
  • Marino Vacchi
    • 4
  • Eva Pisano
    • 5
  1. 1.Institute of Marine Sciences (ISMAR), CNRGenoaItaly
  2. 2.Department of Animal BiologyUniversity of IllinoisUrbana-ChampaignUSA
  3. 3.IBPS, CNRS, UMR 7138 « Evolution »Université Pierre et Marie CurieParisFrance
  4. 4.Institute of Marine Sciences (ISMAR), CNRGenoaItaly
  5. 5.Department of Earth, Environmental and Life Sciences (DISTAV)University of GenoaGenoaItaly

Personalised recommendations