, Volume 762, Issue 1, pp 209–222 | Cite as

Physical, chemical, and management-related drivers of submerged macrophyte occurrence in Mediterranean farm ponds

  • Irene Gallego
  • Carmen Pérez-Martínez
  • Pedro M. Sánchez-Castillo
  • Francisca Fuentes-Rodríguez
  • Melchor Juan
  • J. Jesús Casas
Primary Research Paper


The construction of ponds for irrigation has proliferated during last decades in Mediterranean regions. If properly constructed and managed, ponds may simultaneously meet conservation and agricultural objectives: the preservation of certain macrophytes might improve water quality for irrigation purposes. However, the effects of management are often neglected when analyzing the main drivers of organisms community structure. Here we investigated the effect of environmental variables, construction type and management practices on the occurrence of submerged macrophytes (vascular plants, charophytes, filamentous algae). Total submerged macrophyte coverage and richness did not vary with pond type, but the presence of submerged macrophytes was significantly higher in embankment ponds. Artificial ponds showed the highest charophyte richness but lowest vascular plant occurrence. Total submerged macrophyte occurrence mainly correlated with conductivity and littoral vegetation, whilst the relative importance of environmental factors was higher than variables related to pond type and management. However, embankment ponds showed the highest richness of vascular plants and filamentous algae, and artificial ponds contributed to the regional pool of charophyte species. Thus, construction pond type and management levels might be relevant to understand submerged macrophytes occurrence in man-made ponds, since the three pond types contributed to the local and regional species pool.


Macrophytes Charophytes Filamentous algae Management Disturbance Shallow lakes Man-made lakes 



We would like to thank Dr. Falko Buschke and two anonymous reviewers for their valuable comments on the manuscript. We also thank Dr. Pieter Lemmens and Prof. Luc Brendonck for their comments on an earlier version of this manuscript and Charlotte Philippe for editorial assistance. This study was funded by the Andalusian Regional Government (Project P06RNM01709, Proyecto de Excelencia, Consejería de Innovación, Ciencia y Empresa and Agencia Andaluza del Agua; Junta de Andalucía). IG was also supported by eidA3-ceiA3 (Mención Internacional en el Título de Doctor, 2014). JJC contributed to this paper during tenure of Grant CGL2012-39635 (MINECO-FEDER).

Supplementary material

10750_2015_2352_MOESM1_ESM.pdf (40 kb)
Online Appendix 1 (PDF 39 kb)
10750_2015_2352_MOESM2_ESM.pdf (7 kb)
Online Appendix 2 (PDF 7 kb)


  1. Alahuhta, J. & J. Heino, 2013. Spatial extent, regional specificity and metacommunity structuring in lake macrophytes. Journal of Biogeography 40: 1572–1582.CrossRefGoogle Scholar
  2. APHA, 2005. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, DC.Google Scholar
  3. Baastrup-Spohr, L., L. L. Iversen, J. Dahl-Nielsen & K. Sand-Jensen, 2013. Seventy years of changes in the abundance of Danish charophytes. Freshwater Biology 58: 1682–1693.CrossRefGoogle Scholar
  4. Blanca, G., B. Cabezudo, M. Cueto, C. Morales Torres & C. Salazar (eds), 2011. Flora vascular de Andalucía Oriental. Consejeria de Medio Ambiente. Junta de Andalucía, Sevilla.Google Scholar
  5. Blanchet, F. G., P. Legendre & D. Borcard, 2008. Forward selection of explanatory variables. Ecology 89: 2623–2632.CrossRefPubMedGoogle Scholar
  6. Blindow, I., A. Hargeby & S. Hilt, 2014. Facilitation of clear-water conditions in shallow lakes by macrophytes: differences between charophyte and angiosperm dominance. Hydrobiologia 737: 99–110.CrossRefGoogle Scholar
  7. Bonachela, S., M. Juan, J. J. Casas, F. Fuentes-Rodríguez, I. Gallego & M. A. Elorrieta, 2012. Pond management and water quality for drip irrigation in Mediterranean intensive horticultural systems. Irrigation Science 31: 769–780.CrossRefGoogle Scholar
  8. Borcard, D., F. Gillet & P. Legendre, 2011. Numerical Ecology with R. Springer, New York.CrossRefGoogle Scholar
  9. Cambra, J. & M. Aboal, 1992. Filamentous green algae of Spain: distribution and ecology. Limnetica 8: 213–220.Google Scholar
  10. Capers, R. S., R. Selsky & G. J. Bugbee, 2010. The relative importance of local conditions and regional processes in structuring aquatic plant communities. Freshwater Biology 55: 952–966.CrossRefGoogle Scholar
  11. Carpenter, S. R. & D. M. Lodge, 1986. Effects of submersed macrophytes on ecosystem processes. Aquatic Botany 26: 341–370.CrossRefGoogle Scholar
  12. Casas, J. J., J. S. Sánchez-Oliver, A. Sanz, M. Furné, C. Trenzado, M. Juan, M. Paracuellos, M. D. Suárez, F. Fuentes & I. Gallego, 2011a. The paradox of the conservation of an endangered fish species in a Mediterranean region under agricultural intensification. Biological Conservation 144: 253–262.CrossRefGoogle Scholar
  13. Casas, J. J., J. Toja, S. Bonachela, F. Fuentes, I. Gallego, M. Juan, D. León, P. Peñalver, C. Pérez & P. Sánchez, 2011b. Artificial ponds in a Mediterranean region (Andalusia, southern Spain): agricultural and environmental issues. Water and Environment Journal 25: 308–317.CrossRefGoogle Scholar
  14. Casas, J. J., J. Toja, P. Peñalver, M. Juan, D. León, F. Fuentes-Rodríguez, I. Gallego, E. Fenoy, C. Pérez-Martínez, P. Sánchez, S. Bonachela & M. A. Elorrieta, 2012. Farm ponds as potential complementary habitats to natural Wetlands in a Mediterranean Region. Wetlands 32: 161–174.CrossRefGoogle Scholar
  15. Chappuis, E., E. Gacia & E. Ballesteros, 2011. Changes in aquatic macrophyte flora over the last century in Catalan water bodies (NE Spain). Aquatic Botany 95: 268–277.CrossRefGoogle Scholar
  16. Chappuis, E., E. Gacia & E. Ballesteros, 2014. Environmental factors explaining the distribution and diversity of vascular aquatic macrophytes in a highly heterogeneous Mediterranean region. Aquatic Botany 113: 72–82.CrossRefGoogle Scholar
  17. Chester, E. T. & B. J. Robson, 2013. Anthropogenic refuges for freshwater biodiversity: their ecological characteristics and management. Biological Conservation 166: 64–75.CrossRefGoogle Scholar
  18. Cirujano, S. & L. Medina, 2002. Plantas acuáticas de las lagunas y humedales de Castilla-La Mancha. Real Jardín Botánico, Madrid.Google Scholar
  19. Cirujano, S., J. Cambra, P. Sánchez-Castillo, A. Meco & N. Flor Arnau, 2008. Flora ibérica. Algas Continentales. Carófitos (Characeae). Real Jardín Botánico, Madrid.Google Scholar
  20. Clarke, K. R. & R. M. Warwick, 2001. Changes in marine communities: an approach to statistical analysis and interpretation. PRIMER-E Ltd., Plymouth.Google Scholar
  21. Clarke, K. & R. Gorley, 2006. PRIMER v6: User Manual/Tutorial. PRIMER-E Ltd., Plymouth.Google Scholar
  22. Coops, H., 2002. Ecology of charophytes: an introduction. Aquatic Botany 72: 205–208.CrossRefGoogle Scholar
  23. De Winton, M. D., M. T. Casanova & J. S. Clayton, 2004. Charophyte germination and establishment under low irradiance. Aquatic Botany 79: 175–187.CrossRefGoogle Scholar
  24. Del Pozo, R., C. Fernández-Aláez & M. Fernández-Aláez, 2010. An assessment of macrophyte community metrics in the determination of the ecological condition and total phosphorus concentration of Mediterranean ponds. Aquatic Botany 92: 55–62.Google Scholar
  25. Dray, S., 2009. packfor: Forward Selection with permutation (Canoco p. 46). R package version 0.0-7/r58.
  26. Duarte, C. M. & J. Kalff, 1990. Patterns in the submerged macrophyte biomass of lakes and the importance of the scale of analysis in the interpretation. Canadian Journal of Fisheries and Aquatic Sciences 47: 357–363.CrossRefGoogle Scholar
  27. Duarte, C. M., J. Kalff & R. H. Peters, 1986. Patterns in biomass and cover of aquatic macrophytes in lakes. Canadian Journal of Fisheries and Aquatic Sciences 43: 1900–1908.CrossRefGoogle Scholar
  28. Fernández-Aláez, M., C. Fernández-Aláez & S. Rodríguez, 2002. Seasonal changes in biomass of charophytes in shallow lakes in the northwest of Spain. Aquatic Botany 72: 335–348.CrossRefGoogle Scholar
  29. Flor-Arnau, N., J. Cambra & E. Velasco, 2013. Valoración de lagos y lagunas de la cuenca del Duero a partir de los macrófitos acuáticos. Limnetica 32: 373–390.Google Scholar
  30. Fuentes-Rodríguez, F., M. Juan, I. Gallego, M. Lusi, E. Fenoy, D. León, P. Peñalver, J. Toja & J. J. Casas, 2013. Diversity in Mediterranean farm ponds: trade-offs and synergies between irrigation modernisation and biodiversity conservation. Freshwater Biology 58: 63–78.CrossRefGoogle Scholar
  31. Gallego, I., J. J. Casas, F. Fuentes-Rodríguez, M. Juan, P. Sánchez-castillo & C. Pérez-martínez, 2013. Culture of Spirogyra africana from farm ponds for long- term experiments and stock maintenance. Biotechnology, Agronomy, Society and Environment 17: 423–430.Google Scholar
  32. Gallego, I., T. A. Davidson, E. Jeppesen, C. Pérez-Martínez, F. Fuentes-Rodríguez, M. Juan & J. J. Casas, 2014. Disturbance from pond management obscures local and regional drivers of assemblages of primary producers. Freshwater Biology 59: 1406–1422.CrossRefGoogle Scholar
  33. Handley, R. J. & A. J. Davy, 2002. Seedling root establishment may limit Najas marina L. to sediments of low cohesive strength. Aquatic Botany 73: 129–136.CrossRefGoogle Scholar
  34. Heegaard, E., H. Birks & C. Gibson, 2001. Species–environmental relationships of aquatic macrophytes in Northern Ireland. Aquatic Botany 70: 175–223.CrossRefGoogle Scholar
  35. Hilt, S. & E. M. Gross, 2008. Can allelopathically active submerged macrophytes stabilise clear-water states in shallow lakes? Basic and Applied Ecology 9: 422–432.CrossRefGoogle Scholar
  36. Hinden, H., B. Oertli, N. Menetrey, L. Sager & J. B. Lachavanne, 2005. Alpine pond biodiversity: what are the related environmental variables? Aquatic Conservation: Marine and Freshwater Ecosystems 15: 613–624.CrossRefGoogle Scholar
  37. Irfanullah, H. M. & B. Moss, 2005. Allelopathy of filamentous green algae. Hydrobiologia 543: 169–179.CrossRefGoogle Scholar
  38. Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen, 1998. The structuring role of submerged macrophytes in lakes. Springer, New York.CrossRefGoogle Scholar
  39. John, D. M., B. A. Whitton & A. J. Brook (eds), 2002. The Freshwater Algal Flora of the British Isles: An Identification Guide to Freshwater and Terrestrial Algae. Cambridge University Press, Cambridge.Google Scholar
  40. Juan, M., J. Casas, S. Bonachela, F. Fuentes-Rodríguez, I. Gallego & M. A. Elorrieta, 2012. Construction characteristics and management practices of in-farm irrigation ponds in intensive agricultural systems - agronomic and environmental implications. Irrigation and Drainage 61: 657–665.CrossRefGoogle Scholar
  41. Juan, M., J. J. Casas, S. Bonachela, I. Gallego, F. Fuentes-Rodríguez, E. Fenoy & M. A. Elorrieta, 2013. Management effects on fungal assemblages in irrigation ponds: are biodiversity conservation and the control of phytopathogens compatible? Fundamental and Applied Limnology/Archiv für Hydrobiologie 183: 259–270.CrossRefGoogle Scholar
  42. Juan, M., J. J. Casas, M. A. Elorrieta, S. Bonachela, I. Gallego, F. Fuentes-Rodríguez & E. Fenoy, 2014. Can submerged macrophytes be effective for controlling waterborne phytopathogens in irrigation ponds? An experimental approach using microcosms. Hydrobiologia 732: 183–196.CrossRefGoogle Scholar
  43. Kadlubowska, J., 2009. Süßwasserflora von Mitteleuropa, Bd. 16: Chlorophyta VIII: Conjugatophyceae I: Zygnemales. Spektrum Akademischer, Verlag.Google Scholar
  44. Khan, A., R. Umar & H. H. Khan, 2015. Significance of silica in identifying the processes affecting groundwater chemistry in parts of Kali watershed, Central Ganga Plain, India. Applied Water Science 5: 65–72.Google Scholar
  45. Kohler, A. & S. Schneider, 2003. Macrophytes as bioindicators. Fundamental and Applied Limnology/Archiv für Hydrobiologie 147: 17–31.Google Scholar
  46. Kosten, S., A. Kamarainen, E. Jeppesen, E. H. Van Nes, E. T. H. M. Peeters, N. Mazzeo, L. Sass, J. Hauxwell, N. Hansel-Welch, T. L. Lauridsen, M. Søndergaard, R. W. Bachmann, G. Lacerot & M. Scheffer, 2009. Climate-related differences in the dominance of submerged macrophytes in shallow lakes. Global Change Biology 15: 2503–2517.Google Scholar
  47. Lauridsen, T. L., E. Jeppesen, S. A. J. Declerck, L. De Meester, J. M. Conde-Porcuna, W. Rommens & S. Brucet, 2015. The importance of environmental variables for submerged macrophyte community assemblage and coverage in shallow lakes: differences between northern and southern Europe. Hydrobiologia 744: 49–61.CrossRefGoogle Scholar
  48. Legendre, P. & E. D. Gallagher, 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280.CrossRefGoogle Scholar
  49. Leira, M. & M. Cantonati, 2008. Effects of water-level fluctuations on lakes: an annotated bibliography. Hydrobiologia 613: 171–184.CrossRefGoogle Scholar
  50. Lemmens, P., J. Mergeay, T. De Bie, J. Van Wichelen, L. De Meester & S. A. J. Declerck, 2013. How to maximally support local and regional biodiversity in applied conservation? Insights from pond management. PLoS One 8: e72538.PubMedCentralCrossRefPubMedGoogle Scholar
  51. Lumbreras, A., A. Olives, J. R. Quintana, C. Pardo & J. A. Molina, 2009. Ecology of aquatic Ranunculus communities under the Mediterranean climate. Aquatic Botany 90: 59–66.Google Scholar
  52. Lutton, S., F. Sheldon & S. E. Bunn, 2010. Morphological characteristics of on-farm water storages and their similarity to natural waterbodies in the Border Rivers Catchment, Australia. Aquatic Conservation, Marine and Freshwater Research 20: 47–57.Google Scholar
  53. Markwell, K. A. & C. S. Fellows, 2008. Habitat and biodiversity of on-farm water storages: a case study in Southeast Queensland, Australia. Environmental management 41: 234–249.Google Scholar
  54. McConnaughey, T., 1991. Calcification in Chara corallina: CO2 hydroxylation generates protons for bicarbonate assimilation. Limnology and Oceanography 36: 619–628.Google Scholar
  55. Moss, B., 1990. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia 200–201: 367–377.CrossRefGoogle Scholar
  56. Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, & H. Wagner, 2012. vegan: Community Ecology Package. R package version., R package version 2.0–4.
  57. Rørslett, B., 1991. Principal determinants of aquatic macrophyte richness in northern European lakes. Aquatic Botany 39: 173–193.Google Scholar
  58. Sanderson, B. G., T. Asaeda, L. Rajapakse & A. M. Redden, 2008. Mechanisms affecting biomass and distribution of charophytes and Najas marina in Myall Lake, New South Wales, Australia. Hydrobiologia 608: 99–119.Google Scholar
  59. Scheffer, M., S. H. Hosper, M. L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology and Evolution 8: 275–279.Google Scholar
  60. Scheffer, M., M. van den Berg, A. Breukelaar, C. Breukers, H. Coops, R. Doef & M.-L. Meijer, 1994. Vegetated areas with clear water in turbid shallow lakes. Aquatic Botany 49: 193–196.CrossRefGoogle Scholar
  61. Schneider, S., 2007. Macrophyte trophic indicator values from a European perspective. Limnologica - Ecology and Management of Inland Waters 37: 281–289.CrossRefGoogle Scholar
  62. Søndergaard, M., E. Jeppesen & J. P. Jensen, 2005. Pond or lake: does it make any difference? Archiv für Hydrobiologie 162: 143–165.CrossRefGoogle Scholar
  63. Søndergaard, M., L. S. Johansson, T. L. Lauridsen, T. B. Jørgensen, L. Liboriussen & E. Jeppesen, 2010. Submerged macrophytes as indicators of the ecological quality of lakes. Freshwater Biology 55: 893–908.CrossRefGoogle Scholar
  64. Stelzer, D., S. Schneider & A. Melzer, 2005. Macrophyte-based assessment of lakes – a contribution to the implementation of the European Water Framework Directive in Germany. International Review of Hydrobiology 90: 223–237.CrossRefGoogle Scholar
  65. Trochine, C., M. Guerrieri, L. Liboriussen, M. Meerhoff, T. L. Lauridsen, M. Søndergaard & E. Jeppesen, 2011. Filamentous green algae inhibit phytoplankton with enhanced effects when lakes get warmer. Freshwater Biology 56: 541–553.CrossRefGoogle Scholar
  66. Valdés, B., S. Talavera & E. Fernández-Galiano (eds), 1987. Flora Vascular de Andalucía Occidental. Ketres, Barcelona.Google Scholar
  67. Van Donk, E. & W. J. van de Bund, 2002. Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquatic Botany 72: 261–274.CrossRefGoogle Scholar
  68. Van Geest, G. J., H. Wolters, F. C. J. M. Roozen, H. Coops, R. M. M. Roijackers, A. D. Buijse & M. Scheffer, 2005. Water-level fluctuations affect macrophyte richness in floodplain lakes. Hydrobiologia 539: 239–248.CrossRefGoogle Scholar
  69. Vestergaard, O. & K. Sand-Jensen, 2000. Alkalinity and trophic state regulate aquatic plant distribution in Danish lakes. Aquatic Botany 67: 85–107.CrossRefGoogle Scholar
  70. Wade, P. M., 1990. The colonisation of disturbed freshwater habitats by Characeae. Folia Geobotanica et Phytotaxonomica 25: 275–278.CrossRefGoogle Scholar
  71. Wetzel, R. G. & G. E. Likens, 2000. Limnological Analysis. Springer, New York.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Irene Gallego
    • 1
  • Carmen Pérez-Martínez
    • 2
  • Pedro M. Sánchez-Castillo
    • 3
  • Francisca Fuentes-Rodríguez
    • 1
  • Melchor Juan
    • 1
  • J. Jesús Casas
    • 1
  1. 1.Departamento de Biología y GeologíaUniversidad de Almería, ceiA3AlmeríaSpain
  2. 2.Instituto del AguaUniversidad de GranadaGranadaSpain
  3. 3.Departamento de BotánicaUniversidad de GranadaGranadaSpain

Personalised recommendations