Skip to main content

Advertisement

Log in

Does flooding mitigation measures affect cladoceran and copepod communities in floodplain water bodies?

  • CLADOCERA
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We investigated the relative importance of flood defenses and other environmental variables for the cladoceran and copepod communities in floodplain water bodies in Southeastern Norway. The water bodies covered gradients of size, distance to the river and water chemistry, and half of them were located behind flood defenses. The effects of environmental variables on the communities were analyzed using redundancy analysis. The set of environmental variables accounted for more of the explained variation in the cladoceran community than in the copepod community. Water quality was much more important than flooding-related variables for both communities. Although cladoceran species richness was slightly higher in water bodies outside flood defenses, total nitrogen, total organic carbon (TOC), and water body area were the most important factors for the cladocerans. Macrophyte coverage was the most important variable for both species richness and community structure of copepods. Although our results show that water quality and spatial/structural variables are more important than flood defenses in structuring the communities, the effect of TOC on the cladoceran community could likely be mediated through effects of flood defense on TOC. Prospects for a continued anthropogenic pressure on river floodplains raise concern for the future of these unique ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Baranyi, C., T. Hein, C. Holarek, S. Keckeis & F. Schiemer, 2002. Zooplankton biomass and community structure in a Danube River floodplain system: effects of hydrology. Freshwater Biology 47: 473–482.

    Article  Google Scholar 

  • Barnett, A. & B. E. Beisner, 2007. Zooplankton biodiversity and lake trophic state: explanations invoking resource abundance and distribution. Ecology 88: 1675–1686.

    Article  PubMed  Google Scholar 

  • Benestad, R. E. & J. E. Haugen, 2007. On complex extremes: flood hazards and combined high spring-time precipitation and temperature in Norway. Climatic Change 85: 381–406.

    Article  Google Scholar 

  • Borcard, D., P. Legendre & P. Drapeau, 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.

    Article  Google Scholar 

  • Brooks, J. L., 1968. The effect of prey size selection by lake planktivores. Systematic Zoology 17: 272–291.

    Article  Google Scholar 

  • Brooks, J. L. & S. I. Dodson, 1965. Predation, body size, and composition of plankton. Science 150: 28–35.

    Article  CAS  PubMed  Google Scholar 

  • Bækken, T., T. Röhrlack & R. Ptacnik, 2008. Samordnet overvåkning av vannkvaliteten i Glomma. Årsrapport 2007 (In Norwegian) NIVA report. Norwegian Institute for Water Research, Oslo: 23 pp.

  • Bækken, T., M. R. Kile, H. Edvardsen & B. B. Skjelbred, 2013. Overvåkning av Glomma, Vorma og Øyeren 2013 (In Norwegian). Norwegian Institute for Water Research, Oslo: 44 pp.

  • Carpenter, S. R., J. J. Cole, M. L. Pace, M. Van de Bogert, D. L. Bade, D. Bastviken, C. M. Gille, J. R. Hodgson, J. F. Kitchell & E. S. Kritzberg, 2005. Ecosystem subsidies: terrestrial support of aquatic food webs from C-13 addition to contrasting lakes. Ecology 86: 2737–2750.

    Article  Google Scholar 

  • Copp, G. H., 1989. The habitat diversity and fish reproductive function of floodplain ecosystems. Environmental Biology of Fishes 26: 1–27.

    Article  Google Scholar 

  • Cottenie, K., N. Nuytten, E. Michels & L. D. Meester, 2001. Zooplankton community structure and environmental conditions in a set of interconnected ponds. Hydrobiologia 442: 339–350.

    Article  Google Scholar 

  • de Eyto, E., K. Irvine, F. Garcia-Criado, M. Gyllstrom, E. Jeppesen, R. Kornijow, M. R. Miracle, M. Nykanen, C. Bareiss, S. Cerbin, J. Salujoe, R. Franken, D. Stephens & B. Moss, 2003. The distribution of chydorids (Branchiopoda, Anomopoda) in European shallow lakes and its application to ecological quality monitoring. Archiv für Hydrobiologie 156: 181–202.

    Article  Google Scholar 

  • Dodson, S. I., 1974. Zooplankton competition and predation: an experimental test of the size-efficiency hypothesis. Ecology 55: 605–613.

    Article  Google Scholar 

  • Duigan, C. A., 1992. The ecology and distribution of the littoral freshwater Chydoridae (Branchiopoda, Anomopoda) of Ireland, with taxonomic comments on some species. Hydrobiologia 241: 1–70.

    Article  Google Scholar 

  • Einsle, U., 1993. Crustacea: Copepoda: Calanoida und Cyclopoida, Vol. 8/4-1. Gustav Fischer Verlag, Stuttgart.

    Google Scholar 

  • Ekeberg, A. K. & B. Walseng, 2000. Colonization of three newly constructed wetlands in Trøgstad municipality, S. E. Norway (in Norwegian). In N. I. f. N. (edn) Research. NINA report Norwegian Institute for Nature Research, Oslo: 49 pp.

  • Flössner, D., 2000. Die Haplopoda und Cladocera (ohne Bosminidae) Mitteleuropas. Backhuys Publishers, Leiden.

    Google Scholar 

  • Frisch, D., 2002. Dormancy, dispersal and the survival of cyclopoid copepods (Cyclopoida, Copepoda) in a lowland floodplain. Freshwater Biology 47: 1269–1281.

    Article  Google Scholar 

  • Frisch, D., B. S. Libman, S. J. D’Surney & S. T. Threlkeld, 2005. Diversity of floodplain copepods (Crustacea) modified by flooding: species richness, diapause strategies and population genetics. Archiv für Hydrobiologie 162: 1–17.

    Article  CAS  Google Scholar 

  • Frisch, D., K. Cottenie, A. Badosa & A. J. Green, 2012. Strong spatial influence on colonization rates in a pioneer zooplankton metacommunity. PLos One 7: e40205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fryer, G., 1996. Diapause, a potent force in the evolution of freshwater crustaceans. Hydrobiologia 320: 1–14.

    Article  Google Scholar 

  • Gerard, M., M. El Kahloun, J. Rymen, O. Beauchard & P. Meire, 2008. Importance of mowing and flood frequency in promoting species richness in restored floodplains. Journal of Applied Ecology 45: 1780–1789.

    Article  Google Scholar 

  • Gray, D. K. & S. E. Arnott, 2011. Does dispersal limitation impact the recovery of zooplankton communities damaged by a regional stressor? Ecological Applications 21: 1241–1256.

    Article  PubMed  Google Scholar 

  • Haddeland, I., 2001. “Flomsone - Delprosjekt Flisa” NVE report, Vol. 9, Oslo: 35 pp (In Norwegian).

  • Herbst, H. V., 1976. Blattfusskrebse (Phyllopoden: Echte Blattfüsser und Wasserflöhe). Kosmos Verlag, Stuttgart.

    Google Scholar 

  • Hill, M. O. & H. G. Gauch, 1980. Detrended correspondence analysis: an improved ordination technique. Plant Ecology 43: 47–58.

    Article  Google Scholar 

  • Jensen, T. C., I. Dimante-Deimantovica, A. K. Schartau & B. Walseng, 2013. Cladocerans respond to differences in trophic state in deeper nutrient poor lakes from Southern Norway. Hydrobiologia 715: 101–112.

    Article  CAS  Google Scholar 

  • Johnsen, S. I., J. Museth, A. K. Schartau, D. N. Barton, K. Fangel, L. Erikstad & B. Dervo, 2011. Local floodplain management in norway under climate change: flood risk reduction and biodiversity conservation. In Kelmam, I. (ed.), Municipalities Addressing Climate Change. Nova Science Publishers Inc, Hauppauge, New York: 113–132.

    Google Scholar 

  • Kiss, A., 2002. Distribution of Microcrustacea in different habitats of a shallow lake in the Ferto-Hanság national park, Hungary. Opuscula Zoologica Budapest 34: 43–50.

    Google Scholar 

  • Lauridsen, T. L. & I. Buenk, 1996. Diel changes in the horizontal distribution of zooplankton in the littoral zone of two shallow eutrophic lakes. Archiv für Hydrobiologie 137: 161–176.

    Google Scholar 

  • Liboriussen, L. & E. Jeppesen, 2006. Structure, biomass, production and depth distribution of periphyton on artificial substratum in shallow lakes with contrasting nutrient concentrations. Freshwater Biology 51: 95–109.

    Article  CAS  Google Scholar 

  • Liu, Q., 1997. Variation partitioning by partial redundancy analysis (RDA). Environmetrics 8: 75–85.

    Article  CAS  Google Scholar 

  • Lytle, D. A. & N. L. Poff, 2004. Adaptation to natural flow regimes. Trends in Ecology & Evolution 19: 94–100.

    Article  Google Scholar 

  • Medley, K. A. & J. E. Havel, 2007. Hydrology and local environmental factors influencing zooplankton communities in floodplain ponds. Wetlands 27: 864–872.

    Article  Google Scholar 

  • Mjelde, M., 2011. Ferskvann. In Lindegaard, A. & S. Henriksen (eds), Norsk Rødliste for Naturtyper 2011. Artsdatabanken, Trondhjem: 69–74.

    Google Scholar 

  • Museth, J., S. I. Johnsen, B. Walseng, O. Hanssen & L. Erikstad, 2011. Managing biodiversity of floodplains in relation to climate change. International Journal of Climate Change Strategies and Management 3: 402–415.

    Article  Google Scholar 

  • Økland, R. H., 1990. Vegetation ecology: theory, methods and applications with reference to fennoscandia. Sommerfeltia 1: 1–172.

    Google Scholar 

  • Palmer, M. W., 1993. Putting things in even better order – the advantages of canonical correspondence-analysis. Ecology 74: 2215–2230.

    Article  Google Scholar 

  • Poff, N. L., J. D. Allan, M. B. Bain, J. R. Karr, K. L. Prestegaard, B. D. Richter, R. E. Sparks & J. C. Stromberg, 1997. The natural flow regime. Bioscience 47: 769–784.

    Article  Google Scholar 

  • Poff, N. L., J. D. Olden, D. M. Pepin & B. P. Bledsoe, 2006. Placing global stream flow variability in geographic and geomorphic contexts. River Research and Applications 22: 149–166.

    Article  Google Scholar 

  • Rautio, M. & A. Korhola, 2002. EfIects of ultraviolet radiation and dissolved organic carbon on the survival of subarctic zooplankton. Polar Biology 25: 460–468.

    Google Scholar 

  • Rey, J. R., S. O’Connell, S. Suárez, Z. Menéndez, L. P. Lounibos & G. Byer, 2004. Laboratory and field studies of Macrocyclops albidus (Crustacea: Copepoda) for biological control of mosquitoes in artificial containers in a subtropical environment. Journal of Vector Ecology 29: 124–134.

    PubMed  Google Scholar 

  • Saksgård, R. & T. Hesthagen, 2004. A 14-year study of habitat use and diet of brown trout (Salmo trutta) and Arctic charr (Salvelinus alpinus) in Lake Atnsjøen, a subalpine Norwegian lake. Hydrobiologia 521: 187–199.

    Article  Google Scholar 

  • Santer, B., 1998. Life cycle strategies of free-living copepods in fresh waters. Journal of Marine Systems 15: 327–336.

    Article  Google Scholar 

  • Scheffer, M. & E. H. van Nes, 2007. Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 584: 455–466.

    Article  CAS  Google Scholar 

  • Sell, A. F., 1998. Adaptation to oxygen deficiency: contrasting patterns of haemoglobin synthesis in two coexisting Daphnia species. Comparative Biochemistry and Physiology a-Molecular and Integrative Physiology 120: 119–125.

    Article  Google Scholar 

  • Simoes, N. R., J. D. Dias, C. M. Leal, L. D. M. Braghin, F. A. Lansac-Toha & C. C. Bonecker, 2013a. Floods control the influence of environmental gradients on the diversity of zooplankton communities in a neotropical floodplain. Aquatic Sciences 75: 607–617.

    Article  Google Scholar 

  • Simoes, N. R., F. A. Lansac-Toha & C. C. Bonecker, 2013b. Drought disturbances increase temporal variability of zooplankton community structure in floodplains. International Review of Hydrobiology 98: 24–33.

    Article  Google Scholar 

  • Smirnow, N. N., 1971. Chydoridae. Fauna USSR, Crustacea 1 (2). Israel Program for Scientic Translation 1974, Jerusalem.

  • Strecker, A. L., R. Milne & S. E. Arnott, 2008. Dispersal limitation and climate-related environmental gradients structure microcrustacean composition in freshwater lakes, Ellesmere Island, Canada. Canadian Journal of Fisheries and Aquatic Sciences 65: 1905–1918.

    Article  Google Scholar 

  • Tavernini, S., R. Primicerio & G. Rossetti, 2009. Zooplankton assembly in mountain lentic waters is primarily driven by local processes. Acta Oecologica – International Journal of Ecology 35: 22–31.

    Article  Google Scholar 

  • ter Braak, C. J. F., 1995. Ordination. In Jongman, R. H. G., C. J. F. ter Braak & O. F. R. van Tongeren (eds), Data Analysis in Community and Landscape Ecology. Cambridge University Press, Cambridge: 1–299.

    Google Scholar 

  • ter Braak, C. J. F. & P. Šmilauer, 2002. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca NY, USA.

  • Tockner, K. & J. A. Stanford, 2002. Riverine flood plains: present state and future trends. Environmental Conservation 29: 308–330.

    Article  Google Scholar 

  • Torke, B. G., 1976. A key to the identification of the Cyclopoid Copepods of wisconsin, with notes on their distribution and ecology Research report. Wisconsin Department of natural resources: 32.

  • Vadeboncoeur, Y., E. Jeppesen, M. J. V. Zanden, H. H. Schierup, K. Kristoffersen & D. M. Lodge, 2003. From Greenland to green lakes: cultural eutrophication and the loss of benthic pathways in lakes. Limnology and Oceanography 48: 1408–1418.

    Article  Google Scholar 

  • Walseng, B. & G. Halvorsen, 2005. Littoral microcrustaceans as indices of trophy. Verhandlungen des Internationalen Verein Limnologie 29: 827–829.

    Google Scholar 

  • Walseng, B. & G. Halvorsen, 2007. Freshwater crustaceans in Norway. In Norwegian Institute for Nature Research. http://www.nina.no/ninaenglish/Tematicpages/Freshwatercrustaceans.aspx.

  • Walseng, B., D. O. Hessen, G. Halvorsen & A. K. Schartau, 2006. Major contribution from littoral crustaceans to zooplankton species richness in lakes. Limnology and Oceanography 51: 2600–2606.

    Article  Google Scholar 

  • Wetzel, R. G., 2001. Limnology – Lake and River Ecosystems, 3rd edn. Academic Press, New York.

    Google Scholar 

  • Wilkinson, G. M., S. R. Carpenter, J. J. Cole, M. L. Pace & C. Yang, 2013. Terrestrial support of pelagic consumers: patterns and variability revealed by a multilake study. Freshwater Biology 58: 2037–2049.

    Article  Google Scholar 

  • Zaret, T. M., 1980. Predation and Freshwater Communities. Yale University Press, New Haven/London.

    Google Scholar 

Download references

Acknowledgments

This study was partly financed by the strategic institute program project “Municipalities addressing climate change,” funded by the Norwegian Research Council. The study was also supported by the Norwegian Institute for Nature Research. Erik Framstad, Odd Terje Sandlund, Adam Petrusek, and two anonymous reviewers provided valuable suggestions and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Correll Jensen.

Additional information

Guest editors: Adam Petrusek & Piet Spaak / Proceedings of the 10th International Symposium on Cladocera

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jensen, T.C., Walseng, B. & Museth, J. Does flooding mitigation measures affect cladoceran and copepod communities in floodplain water bodies?. Hydrobiologia 798, 45–60 (2017). https://doi.org/10.1007/s10750-015-2350-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2350-x

Keywords