Skip to main content
Log in

Stress responses of zooxanthellae in juvenile Tridacna gigas (Bivalvia, Cardiidae) exposed to reduced salinity

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Storm events are common in tropical regions and predicted to increase in frequency and intensity attributed to climate change. The iconic giant clams thriving in shallow coral reef areas in the Indo-Pacific region could experience salinity fluctuations during these events characterized by extreme precipitation. Given the limited ecotoxicological studies on the effects of osmotic stress in tridacnids, this study investigated the acclimatization potential to different salinities i.e., 18, 25, and 35‰ (control) for 14 days in juvenile Tridacna gigas. Results showed significant decrease in the chlorophyll a concentrations in giant clams at 18‰. This may be caused by the marked increase in number of degenerating zooxanthellae. Chlorophyll c and carotenoid concentrations were also significantly reduced at 18‰. The zooxanthellae density decreased significantly on Day 1 in both low salinity treatments, although bleaching was not observed. Symbiont cell enlargement was also observed at both low salinity treatments, affecting pigment concentrations at 18‰ but not at 25‰. This study shows that zooxanthellae in giant clams were affected at 18 and 25‰, but exposure to the latter displayed acclimation response as indicated by recovery in the various measured parameters after 14 days of exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allan, R. P. & B. J. Soden, 2008. Atmospheric warming and the amplification of precipitation extremes. Sciencexpress. doi:10.1126/science.1160787.

    Google Scholar 

  • Bin Othman, A. S. B., G. H. S. Goh & P. A. Todd, 2010. The distribution and status of giant clams (Family Tridacnidae) – a short review. The Raffles Bulletin of Zoology 58: 103–111.

    Google Scholar 

  • Blidberg, E., 2004. Effects of copper and decreased salinity on survival rate and development of Tridacna gigas larvae. Marine Environment Research 58: 793–797.

    Article  CAS  Google Scholar 

  • Blidberg, E., T. Elfwing & M. Tedengren, 1999. Physiological responses of the fluted giant clam, Tridacna squamosa, exposed to decreased irradiance and reduced salinity. Phuket Marine Biological Center Special Publication 19(1): 85–91.

    Google Scholar 

  • Blidberg, E., T. Elfwing, P. Plantman & M. Tedengren, 2000. Water temperature influences on physiological behavior in three species of giant clams (Tridacnidae). Proceedings from the 9th International Coral Reef Symposium 1: 561–566.

  • Bohle, B., 1972. Effects of adaptation of reduced salinity of filtration activity and growth of mussels (Mytilus edulis L). Journal Experimental Marine Biology and Ecology 10: 41–47.

    Article  Google Scholar 

  • Braley, R. D., (ed), 1992. The Giant Clam: hatchery and Nursery Culture Manual. ACIAR Monograph No. 15, Australian Center for International Agricultural Research, Canberra, Australia, 144 pp.

  • Brown, B. E., 1997. Coral bleaching: causes and consequences. Coral Reefs 16: S129–S138.

    Article  Google Scholar 

  • Buck, B. H., H. Rosenthal & U. Saint-Paul, 2002. Effect of increased irradiance and thermal stress on the symbiosis of Symbiodinium microadriaticum and Tridacna gigas. Aquatic Living Resources 15: 107–117.

    Article  Google Scholar 

  • Dame, R. F., 2012. Ecology of marine bivalves: an ecosystem approach. 2ed. United States of America. Taylor and Francis Group,

  • Davies, M. S. & J. Hawkins, 1998. Mucus from marine molluscs. Advances in Marine Biology 34: 1–71.

    Article  Google Scholar 

  • Downs, C. A., E. Kramarsky-Winter, C. M. Woodley, A. Downs, G. Winters, Y. Loya & G. K. Ostrander, 2009. Cellular pathology and histopathology of hypo-salinity exposure on the coral Stylophora pistillata. Science of the Total Environment 407: 4838–4851.

    Article  CAS  PubMed  Google Scholar 

  • Douglas, A. E., 2003. Coral bleaching—how and why? Marine Pollution Bulletin 46: 385–392.

    Article  CAS  PubMed  Google Scholar 

  • Dytham, C., 2011. Choosing and Using Statistics: a Biologist’s Guide. Wiley-Blackwell, Chichester.

    Google Scholar 

  • Fankboner, P. V., 1971. Intracellular digestion of symbiotic zooxanthellae by host amoebocytes in giant clams (Bivalvia: tridacnidae) with a note on the nutritional role of the hypertrophied siphonal epidermis. Biological Bulletin 141: 222–234.

    Article  Google Scholar 

  • Gecek, S. & T. Legovic, 2010. Towards carrying capacity assessment for aquaculture in the Bolinao Bay, Philippines: a numerical study of tidal circulation. Ecological Modelling 221: 1394–1412.

    Article  CAS  Google Scholar 

  • Goreau, T. F., 1964. Mass expulsion of zooxanthellae from Jamaican reef communities after hurricane Flora. Science 145: 383–386.

    Article  CAS  PubMed  Google Scholar 

  • Hoegh-Guldberg, O., P. J. Mumby, A. J. Hooten, R. S. Steneck, P. Greenfield, E. Gomez, C. D. Harvell, P. F. Sale, A. J. Edwards, K. Caldeira, N. Knowlton, C. M. Eakin, R. Iglesias-Prieto, N. Muthiga, R. H. Bradbury, A. Dubi & M. E. Hatziolos, 2007. Coral reefs under rapid climate change and ocean acidification. Science 318: 1737–1742.

    Article  CAS  PubMed  Google Scholar 

  • Huguenin, J. E. & J. Colt, 1989. Design and operating guide for aquaculture seawater systems. Developments in Aquaculture and Fisheries Science. Volume 20. Elsevier, Amsterdam.

  • Jeffrey, S. W. & G. F. Humphrey, 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen 167: 191–194.

    CAS  Google Scholar 

  • Jokiel, P. L., C. L. Hunter, S. Taguchi & L. Watarai, 1993. Ecological impact of a fresh-water “reef kill’ in Kaneohe Bay, Oahu, Hawaii. Coral Reefs 12: 177–184.

    Article  Google Scholar 

  • Kerswell, A. P. & R. J. Jones, 2003. Effects of hypo-osmosis on the coral Stylophora pistillata: nature and cause of low-salinity bleaching. Marine Ecology Progress Series 253: 145–154.

    Article  Google Scholar 

  • Leggat, W., T. A. V. Rees & D. Yellowlees, 2000. Meeting the photosynthetic demand for inorganic carbon in an alga-invertebrate association: preferential use of CO2 by symbionts in the giant clam Tridacna gigas. Proceedings of the Royal Society London B: Biological Sciences 267: 523–529.

    Article  CAS  Google Scholar 

  • Leggat, W., B. H. Buck, A. Grice & D. Yellowlees, 2003. The impact of bleaching on the metabolic contribution of dinoflagellate symbionts to their giant clam host. Plant, Cell and Environment 26: 1951–1961.

    Article  CAS  Google Scholar 

  • Luna, L. G. (ed.), 1968. Manual of Histologic Staining Methods of the Armed Forces Institute of Pathology, 3rd ed. McGraw-Hill Book Company, New York: 258.

    Google Scholar 

  • Maboloc, E. A., S. S. Mingoa-Licuanan & R. D. Villanueva, 2014. Effects of reduced salinity on the heterotrophic feeding of the juvenile giant clam Tridacna gigas. Journal of Shellfish Research 33: 373–379.

    Article  Google Scholar 

  • Maruyama, T. & G. A. Heslinga, 1997. Fecal discharge of zooxanthellae in the giant clam Tridacna derasa, with reference to their in situ growth rate. Marine Biology 127: 473–477.

    Article  Google Scholar 

  • Mayfield, A. B. & R. D. Gates, 2007. Osmoregulation in anthozoan-dinoflagellate symbiosis. Comparative Biochemistry and Physiology, Part A 147: 1–10.

    Article  Google Scholar 

  • Meehl, G. A., F. Zwiers, J. Evans, T. Knutson, L. Mearns & P. Whetton, 2000. Trends in extreme weather and climate events: issues related to modeling extremes in projections of future climate change. Bulletin of the American Meteorological Society 81: 3.

    Google Scholar 

  • Mingoa, S. S. M., 1988. Photoadaptation in juveniles Tridacna gigas. In Copland, J. W. & J. S. Lucas (eds), Giant clams in Asia and the Pacific. ACIAR Monograph No. 9, Australian Center for International Agricultural Research, Canberra, Australia, pp. 145–150.

  • Mingoa, S. S. M., 1990. The Influence of Environmental Factors on Juvenile Tridacna gigas [Dissertation]. James Cook University of North Queensland, Townsville: 150.

    Google Scholar 

  • Moberg, F., M. Nystrom, N. Kautsky, M. Tedengren & P. Jarayabhand, 1997. Effects of corals reduced salinity on the rates of photosynthesis and respiration in the hermatypic Porites lutea and Pocillopora damicornis. Marine Ecology Progress Series 157: 53–59.

    Article  Google Scholar 

  • Morton, B., 2002. Effects of extreme rainfall, typhoons and declaration of marine reserve status on corals beached at Cape d’Aguilar (1998 and 1999). Journal of Marine Biological Association of the United Kingdom 82: 729–743.

    Article  Google Scholar 

  • Nakano, Y., M. Tsuchiya, S. Rungsupa & K. Yamazato, 2009. Influence of severe freshwater flooding during the rainy season on the coral community around Khang Khao Island in the inner Gulf of Thailand. Galaxea Journal of Coral Reef Studies 11: 131–138.

    Article  Google Scholar 

  • Norton, J. H., M. A. Shepherd, H. M. Long & W. K. Fitt, 1992. The zooxanthellar tubular system in the giant clam. Biological Bulletin 183: 503–506.

    Article  Google Scholar 

  • Norton, J. H., H. C. Prior, B. Baillie & D. Yellowlees, 1995. Atrophy of the zooxanthellal tubular system in bleached giant clams Tridacna gigas. Journal of Invertebrate Pathology 66: 307–310.

    Article  Google Scholar 

  • Parsons, T. R. & J. D. H. Strickland, 1963. Seawater analysis. Journal of Marine Research 21: 155–163.

    CAS  Google Scholar 

  • Sugiyama, M., H. Shiogama & S. Emori, 2010. Precipitation extreme changes exceeding moisture content increases in MIROC and IPCC climate models. Proceedings of the National Academy of Sciences USA 107: 571–575.

    Article  CAS  Google Scholar 

  • Trench, R. K., D. S. Wethey & J. W. Porter, 1981. Observations on the symbiosis with zooxanthellae among the Tridacnidae (Mollusca, Bivalvia). Biological Bulletin 161: 180–198.

    Article  Google Scholar 

  • Underwood, A. J., 1997. Experiments in Ecology: their Logical Design and Interpretation Using Analysis of Variance. Cambridge University Press, Cambridge.

    Google Scholar 

  • van Woesik, R., L. M. De Vantier & J. S. Glazebrook, 1995. Effects of cyclone ‘Joy’ on nearshore coral communities of the Great Barrier Reef. Marine Ecology Progress Series 128: 261–270.

    Article  Google Scholar 

  • Walsh, K. & A. B. Pittock, 1998. Potential changes in tropical storms, hurricanes, and extreme rainfall events as a result of climate change. Climatic Change 39: 199–213.

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by UPMSI Giant Clam Project (University of the Philippines In-house Project), Marine Environment and Resources Foundation, Inc., and Bolinao Marine Laboratory MSc Thesis Assistance Grant. The authors would like to express gratitude to Victor A. Consunji of Semirara Mining Corporation (SMC) and Dr. Ronnie Estrellada of SMC Marine Laboratory for providing the experimental clams. Drs. Edgardo D. Gomez, Marco Nemesio Montaño, S. Suzanne Mingoa-Licuanan and two anonymous reviewers provided insightful comments and suggestions for the improvement of the manuscript. This study is part of E.A. Maboloc’s MSc thesis. This is UPMSI Contribution No. 438.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizaldy A. Maboloc.

Additional information

Handling editor: Diego Fontaneto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maboloc, E.A., Puzon, J.J.M. & Villanueva, R.D. Stress responses of zooxanthellae in juvenile Tridacna gigas (Bivalvia, Cardiidae) exposed to reduced salinity. Hydrobiologia 762, 103–112 (2015). https://doi.org/10.1007/s10750-015-2341-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2341-y

Keywords

Navigation