Skip to main content
Log in

Potential mechanisms of coexistence between two globally important Pseudo-nitzschia (Bacillariophyta) species

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

To understand the mechanisms leading to coexistence and exclusion, it is essential to establish information on the nutritional needs of species. We focused on the frequently coexisting Pseudo-nitzschia species, P. delicatissima and P. galaxiae, capable of forming blooms and producing domoic acid. We employed monoculture experiments to determine growth kinetic parameters important for understanding resource use (i.e. maximum specific growth rate, half-saturation coefficients for growth and cell quotas), and we coupled mixed-culture experiments and numerical modelling to explore the role of resource competition relative to unknown factors, such as allelopathy. Experimental results showed that both species had a high requirement for nitrogen (N) and low requirement for phosphorus (P), consistent with field observations of Pseudo-nitzschia blooms in N-rich conditions. The model accurately predicted the outcome of competition; P. galaxiae outcompeted P. delicatissima when considering only resource competition, but the population trajectories were better predicted when allelopathic effects were added. Since the competitive exclusion of P. delicatissima by P. galaxiae in our laboratory experiments is not consistent with observations of coexistence in the natural environment, the model was further modified to explore realistic ranges of population loss factors, such as sinking, demonstrating how coexistence is possible when these are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amato, A., L. Orsini, D. D’Alelio & M. Montresor, 2005. Life cycle, size reduction patterns, and ultrastructure of the pennate planktonic diatom Pseudo-nitzschia delicatissima (Bacillariophyceae). Journal of Phycology 41: 542–556.

    Article  Google Scholar 

  • Anderson, D. M., P. M. Glibert & J. M. Burkholder, 2002. Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25: 704–726.

    Article  Google Scholar 

  • Anderson, D. M., J. M. Burkholder, W. P. Cochlan, P. M. Glibert, C. J. Gobler, C. A. Heil, R. M. Kudela, M. L. Parsons, J. E. J. Rensel, D. W. Townsend, V. L. Trainer & G. A. Vargo, 2008. Harmful algal blooms and eutrophication: examining linkages from selected coastal regions of the United States. Harmful Algae 8: 39–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bachmann, R. W. & D. E. Canfield Jr., 1996. Use of an alternative method for monitoring total nitrogen concentrations in Florida lakes. Hydrobiologia 323: 1–8.

    Article  CAS  Google Scholar 

  • Bates, S. S., 1998. Ecophysiology and metabolism of ASP toxin production. In Anderson, D. M., A. D. Cembella & G. M. Hallegraeff (eds), Physiological ecology of harmful algal blooms. Springer, Heidelberg.

    Google Scholar 

  • Bracco, A., A. Provenzale & I. Scheuring, 2000. Mesoscale vortices and the paradox of the plankton. Proceedings of the Royal Society B-Biological Sciences 267: 1795–1800.

    Article  CAS  PubMed Central  Google Scholar 

  • Brussaard, C. P. D., 2004. Viral control of phytoplankton populations—a review. Journal of Eukaryotic Microbiology 51: 125–138.

    Article  PubMed  Google Scholar 

  • Caroppo, C., R. Congestri, L. Bracchini & P. Albertano, 2005. On the presence of Pseudo-nitzschia calliantha Lundholm, Moestrup et Hasle and Pseudo-nitzschia delicatissima (Cleve) Heiden in the Southern Adriatic Sea (Mediterranean Sea, Italy). Journal of Plankton Research 27: 763–774.

    Article  Google Scholar 

  • Cerino, F., L. Orsini, D. Sarno, C. Dell’Aversano, L. Tartaglione & A. Zingone, 2005. The alternation of different morphotypes in the seasonal cycle of the toxic diatom Pseudo-nitzschia galaxiae. Harmful Algae 4: 33–48.

    Article  CAS  Google Scholar 

  • Chen, B. Z. & H. B. Liu, 2010. Relationships between phytoplankton growth and cell size in surface oceans: interactive effects of temperature, nutrients, and grazing. Limnology and Oceanography 55: 965–972.

    Article  CAS  Google Scholar 

  • Cochlan, W. P., J. Herndon & R. M. Kudela, 2008. Inorganic and organic nitrogen uptake by the toxigenic diatom Pseudo-nitzschia australis (Bacillariophyceae). Harmful Algae 8: 111–118.

    Article  CAS  Google Scholar 

  • Edwards, K. F., C. A. Klausmeier & E. Litchman, 2011. Evidence for a three-way trade-off between nitrogen and phosphorus competitive abilities and cell size in phytoplankton. Ecology 92: 2085–2095.

    Article  PubMed  Google Scholar 

  • Fehling, J., K. Davidson & S. S. Bates, 2005. Growth dynamics of non-toxic Pseudo-nitzschia delicatissima and toxic P. seriata (Bacillariophyceae) under simulated spring and summer photoperiods. Harmful Algae 4: 763–769.

    Article  Google Scholar 

  • Granéli, E. & N. Johansson, 2003. Increase in the production of allelopathic substances by Prymnesium parvum cells grown under N- or P-deficient conditions. Harmful Algae 2: 135–145.

    Article  Google Scholar 

  • Granéli, E., M. Weberg & P. S. Salomon, 2008. Harmful algal blooms of allelopathic microalgal species: the role of eutrophication. Harmful Algae 8: 94–102.

    Article  Google Scholar 

  • Gross, E. M., 2003. Allelopathy of aquatic autotrophs. Critical Reviews in Plant Sciences 22: 313–339.

    Article  Google Scholar 

  • Grover, J. P., 1989a. Effects of Si–P supply ratio, supply variability, and selective grazing in the plankton—an experiment with a natural algal and protistan assemblage. Limnology and Oceanography 34: 349–367.

    Article  CAS  Google Scholar 

  • Grover, J. P., 1989b. Influence of cell shape and size on algal competitive ability. Journal of Phycology 25: 402–405.

    Article  Google Scholar 

  • Grover, J. P., 1991. Dynamics of competition among microalgae in variable environments—experimental tests of alternative models. Oikos 62: 231–243.

    Article  Google Scholar 

  • Grover, J. P., J. W. Baker, D. L. Roelke & B. W. Brooks, 2010. Current status of mathematical models for population dynamics of Prymnesium parvum in a Texas reservoir. Journal of the American Water Resources Association 46: 92–107.

    Article  Google Scholar 

  • Guillard, R. R. L. & J. H. Ryther, 1962. Studies of marine planktonic diatoms, I. Cyclotella nana Hustedt, and Detonula confervacea Clevetle. Canadian Journal of Microbiology 8: 229–239.

    Article  CAS  PubMed  Google Scholar 

  • Guillard, R. R. L., 1975. Culture of phytoplankton for feeding marine invertebrates. In Smith, W. L. & M. H. Chanley (eds), Culture of Marine Invertebrate Animals. Plenum Press, New York.

    Google Scholar 

  • Hallegraeff, G. M., 2010. Ocean climate change, phytoplankton community responses, and harmful algal blooms: a formidable predictive challenge. Journal of Phycology 46: 220–235.

    Article  CAS  Google Scholar 

  • Heisler, J., P. M. Glibert, J. M. Burkholder, D. M. Anderson, W. Cochlan, W. C. Dennison, Q. Dortch, C. J. Gobler, C. A. Heil, E. Humphries, A. Lewitus, R. Magnien, H. G. Marshall, K. Sellner, D. A. Stockwell, D. K. Stoecker & M. Suddleson, 2008. Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae 8: 3–13.

    Article  CAS  Google Scholar 

  • Hill, G. & C. Robinson, 1974. Measurement of aerobic batch culture maximum specific growth rate and respiration coefficient using a dissolved oxygen probe. Biotechnology and bioengineering 16: 531–538.

    Article  CAS  PubMed  Google Scholar 

  • Holm, N. P. & D. E. Armstrong, 1981. Role of nutrient limitation and competition in controlling the populations of Asterionella formosa and Microcystis aeruginosa in semicontinuous culture. Limnology and Oceanography 26: 622–634.

    Article  CAS  Google Scholar 

  • Huisman, J., 2002. Oscillations and chaos generated by competition for interactively essential resources. Ecological Research 17: 175–181.

    Article  Google Scholar 

  • Huisman, J. & F. J. Weissing, 2001. Biological conditions for oscillations and chaos generated by multispecies competition. Ecology 82: 2682–2695.

    Article  Google Scholar 

  • Hutchinson, G. E., 1967. A treatise on limnology, Vol. 2. Wiley, New York: 1116.

    Google Scholar 

  • Kaczmarska, I., J. L. Martin, J. M. Ehrman & M. M. LeGresley, 2007. Pseudo-nitzschia species population dynamics in the Quoddy Region, Bay of Fundy. Harmful Algae 6: 861–874.

    Article  Google Scholar 

  • Klein, C., P. Claquin, V. Bouchart, B. Le Roy & B. Veron, 2010. Dynamics of Pseudo-nitzschia spp. and domoic acid production in a macrotidal ecosystem of the Eastern English Channel (Normandy, France). Harmful Algae 9: 218–226.

    Article  CAS  Google Scholar 

  • Leblad, B. R., N. Lundholm, D. Goux, B. Veron, R. Sagou, H. Taleb, H. Nhhala & H. Er-Raioui, 2013. Pseudo-nitzschia Peragallo (Bacillariophyceae) diversity and domoic acid accumulation in tuberculate cockles and sweet clams in M’diq Bay, Morocco. Acta Botanica Croatica 72: 35–47.

    CAS  Google Scholar 

  • Litchman, E. & C. A. Klausmeier, 2008. Trait-based community ecology of phytoplankton. Annual Review of Ecology, Evolution, and Systematics 39: 615–639.

    Article  Google Scholar 

  • Loureiro, S., C. Jauzein, E. Garces, Y. Collos, J. Camp & D. Vaque, 2009. The significance of organic nutrients in the nutrition of Pseudo-nitzschia delicatissima (Bacillariophyceae). Journal of Plankton Research 31: 399–410.

    Article  CAS  Google Scholar 

  • Lundholm, N. & O. Moestrup, 2002. The marine diatom Pseudo-nitzschia galaxiae sp. nov. (Bacillariophyceae): morphology and phylogenetic relationships. Phycologia 41: 594–605.

    Article  Google Scholar 

  • Lundholm, N., P. J. Hansen & Y. Kotaki, 2005. Lack of allelopathy effects of the domoic acid producing marine diatom Pseudo-nitzschia multiseries. Marine Ecology: Progress Series 288: 21–33.

    Article  Google Scholar 

  • Mann, K. H. & J. R. N. Lazier, 1991. Dynamics of marine ecosystems—biological–physical interactions in the Oceans. Blackwell Scientific Publications, Boston.

    Google Scholar 

  • Moschandreou, K. K. & G. Nikolaidis, 2010. The genus Pseudo-nitzschia (Bacillariophyceae) in Greek coastal waters. Botanica Marina 53: 159–172.

    Article  Google Scholar 

  • Moschandreou, K. K., A. D. Baxevanis, P. Katikou, D. Papaefthimiou, G. Nikolaidis & T. J. Abatzopoulos, 2012. Inter- and intra-specific diversity of Pseudo-nitzschia (Bacillariophyceae) in the northeastern Mediterranean. European Journal of Phycology 47: 321–339.

    Article  CAS  Google Scholar 

  • Parsons, T. R., Y. Maita & C. M. Lalli, 1984. A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford.

    Google Scholar 

  • Pujo-Pay, M. & P. Raimbault, 1994. Improvement of the wet-oxidation procedure for simultaneous determination of particulate organic nitrogen and phosphorus collected on filters. Marine Ecology Progress Series 105: 203–207.

    Article  CAS  Google Scholar 

  • Quijano-Scheggia, S., E. Garces, E. Flo, M. Fernandez-Tejedor, J. Diogene & J. Camp, 2008. Bloom dynamics of the genus Pseudo-nitzschia (Bacillariophyceae) in two coastal bays (NW Mediterranean Sea). Scientia Marina 72: 577–590.

    Google Scholar 

  • Quijano-Scheggia, S., E. Garces, K. B. Andree, P. de la Iglesia, J. Diogene, J. M. Fortuno & J. Camp, 2010. Pseudo-nitzschia species on the Catalan coast: characterization and contribution to the current knowledge of the distribution of this genus in the Mediterranean Sea. Scientia Marina 74: 395–410.

    Article  Google Scholar 

  • Quijano-Scheggia, S., A. Olivos Ortiz, J. H. Gaviño Rodríguez, F. Castro-Ochoa, M. Rivera-Vilarelle, M. A. Galicia Pérez & M. Patiño Barragán, 2011. First report of Pseudo-nitzschia brasiliana and P. micropora (Bacillariophycea) found in Cuyutlan Lagoon. Mexico Revista de Biología Marina y Oceanografía 46: 189–197.

    Article  Google Scholar 

  • Reynolds, C., 2006. The ecology of phytoplankton. Cambridge University Press, New York.

    Book  Google Scholar 

  • Rhodes, L., W. Jiang, B. Knight, J. Adamson, K. Smith, V. Langi & M. Edgar, 2013. The genus Pseudo-nitzschia (Bacillariophyceae) in New Zealand: analysis of the last decade’s monitoring data. New Zealand Journal of Marine and Freshwater Research 47: 490–503.

    Article  CAS  Google Scholar 

  • Rhodes, L. L., 1998. Identification of potentially toxic Pseudo-nitzschia (Bacillariophyceae) in New Zealand coastal waters, using lectins. New Zealand Journal of Marine and Freshwater Research 32: 537–544.

    Article  CAS  Google Scholar 

  • Richardson, B., 1998. Nutrient competition within several dominant microalgal taxa of Florida Bay, Florida Bay and adjucent marine systems science program, Florida Bay.

  • Richerson, P., R. Armstrong & C. R. Goldman, 1970. Contemporaneous disequilibrium, a new hypothesis to explain the ‘paradox of plankton’. Proceedings of the National Academy of Sciences of the United States of America 67: 1710–1714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivera-Vilarelle, M., S. Quijano-Scheggia, A. Olivos-Ortiz, J. H. Gaviño-Rodríguez, F. Castro-Ochoa & A. Reyes-Herrera, 2013. The genus Pseudo-nitzschia (Bacillariophyceae) in Manzanillo and Santiago Bays, Colima, Mexico. Botanica Marina 56: 357–373.

    Article  Google Scholar 

  • Roelke, D. L., L. A. Cifuentes & P. M. Eldridge, 1997. Nutrient and phytoplankton dynamics in a sewage-impacted gulf coast estuary: a field test of the PEG-model and equilibrium resource competition theory. Estuaries 20: 725–742.

    Article  CAS  Google Scholar 

  • Roelke, D. L., P. M. Eldridge & L. A. Cifuentes, 1999. A model of phytoplankton competition for limiting and nonlimiting nutrients: implications for development of estuarine and nearshore management schemes. Estuaries 22: 92–104.

    Article  CAS  Google Scholar 

  • Roelke, D., Y. Buyukates, M. Williams & J. Jean, 2004. Interannual variability in the seasonal plankton succession of a shallow, warm-water lake. Hydrobiologia 513: 205–218.

    Article  Google Scholar 

  • Sarthou, G., K. R. Timmermans, S. Blain & P. Treguer, 2005. Growth physiology and fate of diatoms in the ocean: a review. Journal of Sea Research 53: 25–42.

    Article  CAS  Google Scholar 

  • Schabhüttl, S., P. Hingsamer, G. Weigelhofer, T. Hein, A. Weigert & M. Striebel, 2013. Temperature and species richness effects in phytoplankton communities. Oecologia 171: 527–536.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidtke, A., U. Gaedke & G. Weithoff, 2010. A mechanistic basis for under yielding in phytoplankton communities. Ecology 91: 212–221.

    Article  PubMed  Google Scholar 

  • Scholin, C. A., F. Gulland, G. J. Doucette, S. Benson, M. Busman, F. P. Chavez, J. Cordaro, R. DeLong, A. De Vogelaere, J. Harvey, M. Haulena, K. Lefebvre, T. Lipscomb, S. Loscutoff, L. J. Lowenstine, R. Marin III, P. E. Miller, W. A. McLellan, P. D. R. Moeller, C. L. Powell, T. Rowles, P. Silvagni, M. Silver, T. Spraker, V. Trainer & F. M. Van Dolah, 2000. Mortality of sea lions along the central California coast linked to a toxic diatom bloom. Nature 403: 80–84.

    Article  CAS  PubMed  Google Scholar 

  • Smayda, T. J., 1970. The suspension and sinking of phytoplankton in the sea. Oceanography and Marine Biology—An Annual Review 8: 353–414.

    Google Scholar 

  • Sommer, U., 1984. The paradox of the plankton—fluctuations of phosphorus availability maintain diversity of phytoplankton in flow-through cultures. Limnology and Oceanography 29: 633–636.

    Article  Google Scholar 

  • Sommer, U., 1985. Comparison between steady-state and non-steady state competition—experiments with natural phytoplankton. Limnology and Oceanography 30: 335–346.

    Article  CAS  Google Scholar 

  • Sommer, U., 1986. Nitrate- and silicate- competition among Antarctic phytoplankton. Marine Biology 91: 345–351.

    Article  CAS  Google Scholar 

  • Spatharis, S., G. Tsirtsis, D. B. Danielidis, T. D. Chi & D. Mouillot, 2007. Effects of pulsed nutrient inputs on phytoplankton assemblage structure and blooms in an enclosed coastal area. Estuarine Coastal and Shelf Science 73: 807–815.

    Article  Google Scholar 

  • Spatharis, S., N. P. Dolapsakis, A. Economou-Amilli, G. Tsirtsis & D. B. Danielidis, 2009. Dynamics of potentially harmful microalgae in a confined Mediterranean Gulf—assessing the risk of bloom formation. Harmful Algae 8: 736–743.

    Article  Google Scholar 

  • Sterner, R. W., 1989. Resource competition during seasonal succession toward dominance by cyanobacteria. Ecology 70: 229–245.

    Article  Google Scholar 

  • Sun, J. & D. Liu, 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of Plankton Research 25: 1331–1346.

    Article  Google Scholar 

  • Tamvakis, A., J. Miritzis, G. Tsirtsis, A. Spyropoulou & S. Spatharis, 2012. Effects of meteorological forcing on coastal eutrophication: modeling with model trees. Estuarine Coastal and Shelf Science 115: 210–217.

    Article  CAS  Google Scholar 

  • Teng, S. T., C. P. Leaw, H. C. Lim & P. T. Lim, 2013. The genus Pseudo-nitzschia (Bacillariophyceae) in Malaysia, including new records and a key to species inferred from morphology-based phylogeny. Botanica Marina 56: 375–398.

    Article  Google Scholar 

  • Thessen, A. E. & D. K. Stoecker, 2008. Distribution, abundance and domoic acid analysis of the toxic diatom genus Pseudo-nitzschia from the Chesapeake Bay. Estuaries Coasts 31: 664–672.

    Article  CAS  Google Scholar 

  • Thessen, A. E., H. A. Bowers & D. K. Stoecker, 2009. Intra- and interspecies differences in growth and toxicity of Pseudo-nitzschia while using different nitrogen sources. Harmful Algae 8: 792–810.

    Article  CAS  Google Scholar 

  • Tilman, D., 1977. Resource competition between planktonic algae—experimental and theoretical approach. Ecology 58: 338–348.

    Article  CAS  Google Scholar 

  • Tilman, D., 1981. Tests of resource competition theory using 4 species of lake-Michigan algae. Ecology 62: 802–815.

    Article  Google Scholar 

  • Tilman, D., 1982. Resource competition and community structure. Prinston University Press, Princeton.

    Google Scholar 

  • Tilman, D. & S. S. Kilham, 1976. Phosphate and silicate growth and uptake kinetics of the diatoms Asterionella formosa and Cyclotella meneghiniana in batch and semicontinuous culture. Journal of Phycology 12: 375–383.

    CAS  Google Scholar 

  • Tilman, D., S. S. Kilham & P. Kilam, 1982. Phytoplankton community ecology: the role of limiting nutrients. Annual Review of Ecology and Systematics 13: 349–372.

    Article  Google Scholar 

  • Trainer, V. L., S. S. Bates, N. Lundholm, A. E. Thessen, W. P. Cochlan, N. G. Adams & C. G. Trick, 2012. Pseudo-nitzschia physiological ecology, phylogeny, toxicity, monitoring and impacts on ecosystem health. Harmful Algae 14: 271–300.

    Article  Google Scholar 

  • Turner, R. E. & N. N. Rabalais, 1991. Changes in Mississippi River water-quality this century. Bioscience 41: 140–147.

    Article  Google Scholar 

  • Walsby, A. E. & D. P. Holland, 2006. Sinking velocities of phytoplankton measured on a stable density gradient by laser scanning. Journal of The Royal Society Interface 3: 429–439.

    Article  PubMed Central  Google Scholar 

  • Watanabe, M., K. Kohata, T. Kimura, T. Takamatsu, S. Yamaguchi & T. Ioriya, 1995. Generation of a Chattonella antiqua bloom by imposing a shallow nutricline in a mesocosm. Limnology and Oceanography 40: 1447–1460.

    Article  Google Scholar 

  • Xu, N., Y. Z. Tang, J. Qin, S. Duan & C. J. Gobler, 2015. Ability of the marine diatoms Pseudo-nitzschia multiseries and P. pungens to inhibit the growth of co-occurring phytoplankton via allelopathy. Aquatic Microbial Ecology 74: 29–41.

    Article  Google Scholar 

  • Yeager, C. L. J., L. W. Harding & M. E. Mallonee, 2005. Phytoplankton production, biomass and community structure following a summer nutrient pulse in Chesapeake Bay. Aquatic Ecology 39: 135–149.

    Article  CAS  Google Scholar 

  • Zapata, M., F. Rodriguez, S. Fraga, L. Barra & M. V. Ruggiero, 2011. Chlorophyll C pigment patterns in 18 species (51 strains) of the genus Pseudo-nitzschia (Bacillariophyceae). Journal of Phycology 47: 1274–1280.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We dedicate this research to Nikolas Dolapsakis, a scientist and friend who is missed. He collected and isolated the P. galaxiae and P. delicatissima cultures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofie Spatharis.

Additional information

Handling editor: Luigi Naselli-Flores

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smeti, E., Roelke, D.L., Gremion, G. et al. Potential mechanisms of coexistence between two globally important Pseudo-nitzschia (Bacillariophyta) species. Hydrobiologia 762, 89–101 (2015). https://doi.org/10.1007/s10750-015-2340-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2340-z

Keywords

Navigation