, Volume 762, Issue 1, pp 29–39 | Cite as

How to deal with a bad neighbor? Strategies of sympatric freshwater decapods (Crustacea) for coexistence

  • Joele S. Baumart
  • Marcelo M. Dalosto
  • Alberto S. Gonçalves
  • Alexandre V. Palaoro
  • Sandro Santos
Primary Research Paper


Species with similar niches may exhibit adaptations to diminish competitive pressure and allow sympatry; freshwater decapods are interesting models for the investigations of these strategies. We studied the behavior of two co-occurring decapod species: the anomuran Aegla longirostri and the crayfish Parastacus pilimanus, and investigated the following: (1) whether the species use the stream similarly; (2) if they present zonation within it; (3) if they have different activity levels; and (4) whether their activity patterns overlap. For this, we radio-tracked individuals of both species in their natural environment. Aeglids had larger home ranges than crayfish when considering only the stream. However, crayfish remained in burrows more than in the stream, and the total home ranges did not differ significantly from aeglids. Stream sections used by both species highly overlap, indicating no zonation. Aeglids used the stream more often and more intensively than crayfish, but their diel activity patterns were similar. Despite the lack of zonation in the stream and of temporal segregation, there seems to be some degree of spatial segregation. Differential habitat use seems to be the one of the mechanisms allowing crayfish to coexist with aeglids.


Aeglids Aquatic environment Competitive exclusion Crayfish Temporal segregation Spatial segregation 



We thank CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for the scholarships to JSB, ASG, and AVP, CAPES/FAPERGS (Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul) for the scholarship to MMD, CNPq for the productivity grant to SS (Process no: 308598/2011-3), Idea Wild for donating the equipment, and TM Dias for reading and commenting on the manuscript. We also thank the editor and three anonymous referees for valuable comments and suggestions that improved the quality of the manuscript, and Dr. Miguel Durlo for allowing us to perform the fieldwork in his property.

Conflict of interest

We declare no competing interests.

Supplementary material

10750_2015_2331_MOESM1_ESM.docx (131 kb)
Supplementary material 1 (DOCX 130 kb)


  1. Adler, P. B., J. HilleRisLambers & J. M. Levine, 2007. A niche for neutrality. Ecology Letters 10: 95–104.CrossRefPubMedGoogle Scholar
  2. Ayres-Peres, L., C. Coutinho, J. S. Baumart, A. S. Gonçalves, P. B. Araújo & S. Santos, 2011a. Radio-telemetry techniques in the study of displacement of freshwater anomurans. Nauplius 19: 41–54.CrossRefGoogle Scholar
  3. Ayres-Peres, L., P. B. Araújo & S. Santos, 2011b. Description of the agonistic behavior of Aegla longirostri (Decapoda: Aeglidae). Journal of Crustacean Biology 31: 379–388.CrossRefGoogle Scholar
  4. Barbaresi, S. & F. Gherardi, 1997. Italian freshwater decapods: exclusion between the crayfish Austropotamobius pallipes (Faxon) and the river crab Potamon fluviatile (Herbst). Bulletin Français de la Pêche et la Pisciculture 347: 731–747.CrossRefGoogle Scholar
  5. Barbaresi, S., F. Gherardi & M. Vannini, 1997. Movement patterns of river crabs (Decapoda, Potamoidea) in the field: predictable and unpredictable components. Journal of Zoology 242: 247–259.CrossRefGoogle Scholar
  6. Bond-Buckup, G. & L. Buckup, 1994. A família Aeglidae (Crustacea, Decapoda, Anomura). Arquivos de Zoologia 32: 159–347.CrossRefGoogle Scholar
  7. Bovbjerg, R. V., 1970. Ecological isolation and competitive exclusion in two crayfish (Orconectes virilis and Orconectes immunis). Ecology 51: 225–236CrossRefGoogle Scholar
  8. Breinholt, J., M. Pérez-Losada & K. A. Crandall, 2009. The timing of the diversification of freshwater crayfishes. In Martin, J. W., K. A. Crandall & D. R. Felder (eds), Decapod Crustacean Phylogenetics. CRC Press, Florida: 434–434.Google Scholar
  9. Bubb, D. H., M. C. Lucas, T. J. Thom & P. Rycroft, 2002. The potential use of PIT telemetry for identifying and tracking crayfish in their natural environment. Hydrobiologia 483: 225–230.CrossRefGoogle Scholar
  10. Bubb, D. H., R. J. Thom & M. C. Lucas, 2006. Movement, dispersal and refuge use of co-occurring introduced and native crayfish. Freshwater Biology 51: 1359–1368.CrossRefGoogle Scholar
  11. Buckup, L., 2003. Família Parastacidae. In Melo, G. A. S. (ed.), Manual de identificação dos Crustacea Decapoda de água doce do Brasil. Editora Loyola, São Paulo: 117–141.Google Scholar
  12. Bueno, A. A. P. & G. Bond-Buckup, 2000. Population dynamics of Aegla platensis Schmitt (Crustacea, Decapoda, Aeglidae). Revista Brasileira de Zoologia 17: 43–49.CrossRefGoogle Scholar
  13. Buřič, M., A. Kouba & P. Kozák, 2009. Spring mating period in Orconectes limosus: the reason for movement. Aquatic Sciences 71: 473–477.CrossRefGoogle Scholar
  14. Burress, E. D., M. M. Gangloff & L. Siefferman, 2013. Trophic analysis of two subtropical South American freshwater crabs using stable isotope ratios. Hydrobiologia 702: 5–13.CrossRefGoogle Scholar
  15. Cogo, G. B. & S. Santos, 2013. The role of aeglids in shredding organic matter in Neotropical streams. Journal of Crustacean Biology 33: 519–526.CrossRefGoogle Scholar
  16. Collins, P. A., F. Giri & V. Williner, 2011. Biogeography of the freshwater decapods in the La Plata basin, South America. Journal of Crustacean Biology 31: 179–191.CrossRefGoogle Scholar
  17. Colpo, K. D., L. R. Oliveira & S. Santos, 2005. Population biology of the freshwater anomuran Aegla longirostri (Crustacea, Anomura, Aeglidae) from Ibicuí-Mirim River, Itaára, RS, Brazil. Journal of Crustacean Biology 25: 495–499.CrossRefGoogle Scholar
  18. Colpo, K. D., L. C. Ribeiro, B. Wesz & L. O. Ribeiro, 2012. Feeding preferences of the South American endemic anomuran Aegla platensis (Decapoda, Anomura, Aeglidae). Naturwissenschaften 99: 333–336.CrossRefPubMedGoogle Scholar
  19. Dalosto, M. M. & S. Santos, 2011. Differences in oxygen consumption and diel activity as adaptations related to microhabitat in Neotropical freshwater decapods (Crustacea). Comparative Biochemistry and Physiology, Part A 160: 461–466.CrossRefGoogle Scholar
  20. Dalosto, M. M., A. V. Palaoro & S. Santos, 2012. Mother-offspring relationship in the Neotropical burrowing crayfish Parastacus pilimanus (von Martens, 1869) (Decapoda, Parastacidae). Crustaceana 85: 1305–1315.CrossRefGoogle Scholar
  21. Dalosto, M. M., A. V. Palaoro, J. R. Costa & S. Santos, 2013. Aggressiveness and life underground: the case of burrowing crayfish. Behaviour 150: 3–22.CrossRefGoogle Scholar
  22. Dayan, T. & D. Simberloff, 2005. Ecological and community-wide character displacement: the next generation. Ecology Letters 8: 875–894.CrossRefGoogle Scholar
  23. Di Bitetti, M. S., C. D. De Angelo, Y. E. Di Blanco & A. Paviolo, 2010. Niche partitioning and species coexistence in a Neotropical felid assemblage. Acta Oecologica 36: 403–412.CrossRefGoogle Scholar
  24. Edgehouse, M., L. C. Latta IV, E. D. Brodie III & E. D. Brodie Jr, 2014. Interspecific aggression and habitat partitioning in garter snakes. PLoS One 9: e86208.PubMedCentralCrossRefPubMedGoogle Scholar
  25. Franco, M., G. Guevara, L. Correa & M. Soto-Gamboa, 2013. Trophic interactions of the endangered Southern river otter (Lontra provocax) in a Chilean Ramsar wetland inferred from prey sampling, fecal analysis, and stable isotopes. Naturwissenschaften 100: 299–310.CrossRefPubMedGoogle Scholar
  26. Fontoura, N. F. & L. Buckup, 1989. Dinâmica populacional e reprodução em Parastacus brasiliensis (von Martens 1869) (Crustacea, Decapoda, Parastacidae). Revista Brasileira de Biologia 49: 911–921.Google Scholar
  27. Gherardi, F. & A. Cioni, 2004. Agonism and interference competition in freshwater decapods. Behaviour 141: 1297–1324.CrossRefGoogle Scholar
  28. Giacalone, V. M., A. Barausse, M. Gristina, C. Pipitone, V. Visconti, F. Badalamenti & G. D’Anna, 2014. Diel activity and short-distance movement pattern of the European spiny lobster, Palinurus elephas, acoustically tracked. Marine Ecology. doi: 10.1111/maec.12148.Google Scholar
  29. Guerra-Castro, E., C. A. Carmona-Suárez & J. E. Conde, 2007. Activity patterns and zonation of the swimming crabs Arenaeus cribrarius and Callinectes ornatus. Journal of Crustacean Biology 27: 49–58.CrossRefGoogle Scholar
  30. Hazlett, B., D. Rittschoff & D. Rubenstein, 1974. Behavioral biology of the crayfish Orconectes virilis I. Home range. American Midland Naturalist 92: 301–319.CrossRefGoogle Scholar
  31. Höjesjö, J., J. D. Armstrong & S. W. Griffiths, 2005. Sneaky feeding by salmon in sympatry with dominant brown trout. Animal Behaviour 69: 1037–1041.CrossRefGoogle Scholar
  32. Jansen, P. A., H. Slettvold, A. G. Finstad & A. Langeland, 2002. Niche segregation between Arctic char (Salvelinus alpinus) and brown trout (Salmo trutta): an experimental study of mechanisms. Canadian Journal of Fisheries and Aquatic Sciences 59: 6–11.CrossRefGoogle Scholar
  33. Kenward, R. E., S. S. Walls, A. B. South & N. M. Casey, 2008. Ranges8: for the analysis of tracking and location data online manual. Anatrack Ltd., Wareham, UK.Google Scholar
  34. Knickle, D. C. & G. A. Rose, 2014. Examination of fine-scale spatial-temporal overlap and segregation between two closely related congeners Gadus morhua and Gadus ogac in coastal Newfoundland. Journal of Fish Biology 85: 713–735.CrossRefPubMedGoogle Scholar
  35. Kovach, W. L., 1994. Oriana for Windows, version 1.03. Kovach Computer Services, Pentraeth.Google Scholar
  36. Loughman, Z. J., K. T. Skalican & N. D. Taylor, 2013. Habitat selection and movement of Cambarus chasmodactylus (Decapoda: Cambaridae) assessed via radio telemetry. Freshwater Science 32: 1288–1297.CrossRefGoogle Scholar
  37. Louhi, P., A. Mäki-Petäys, A. Huusko & T. Muotka, 2013. Resource use by juvenile brown trout and Alpine bullhead: influence of interspecific versus intraspecific competition. Ecology of Freshwater Fish 23: 234–243.CrossRefGoogle Scholar
  38. Macneil, C. & J. T. A. Dick, 2014. Physicochemical tolerance, habitat use and predation are drivers of patterns of coexistence and exclusion among invasive and resident amphipods. Freshwater Biology 59: 1956–1969.CrossRefGoogle Scholar
  39. Moore, A. F., M. Kawasaki & M. Menaker, 2012. Photic induction of locomotor activity is correlated with photic habitat in Anolis lizards. Journal of Comparative Physiology A 198: 193–201.CrossRefGoogle Scholar
  40. Musil, M., M. Buřič, T. Policar, A. Kouba & P. Kozák, 2010. Comparison of diurnal and nocturnal activity between noble crayfish (Astacus astacus) and spinycheek crayfish (Orconectes limosus). Freshwater Crayfish 17: 189–193.Google Scholar
  41. Palaoro, A. V., M. M. Dalosto, G. C. Costa & S. Santos, 2013a. Niche conservatism and the potential for the crayfish Procambarus clarkii to invade South America. Freshwater Biology 58: 1379–1391.CrossRefGoogle Scholar
  42. Palaoro, A. V., M. M. Dalosto, C. Coutinho & S. Santos, 2013b. Assessing the importance of burrows through behavioral observations of Parastacus brasiliensis, a Neotropical burrowing crayfish (Crustacea), in laboratory conditions. Zoological Studies 52: 1–8.CrossRefGoogle Scholar
  43. Parra, C. A., E. M. Barría & C. G. Jara, 2011. Behavioural variation and competitive status in three taxa of Aegla (Decapoda: Anomura: Aeglidae) from two-community settings in Southern Chile. New Zealand Journal of Marine and Freshwater Research 45: 249–262.CrossRefGoogle Scholar
  44. Peel, M. C., B. L. Finlayson & T. A. McMahon, 2007. Updated world map of the Köppen–Geiger climate classification. Hydrology and Earth System Sciences 11: 1633–1644.CrossRefGoogle Scholar
  45. Rahel, F. J. & R. A. Stein, 1988. Complex predator-prey interactions and predator intimidation among crayfish, piscivorous fish, and small benthic fish. Oecologia 75: 94–98.CrossRefGoogle Scholar
  46. R Development Core Team, 2013. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
  47. Riek, E. F., 1971. The freshwater crayfishes of South America. Proceedings of the Biological Society of Washington 84: 129–136.Google Scholar
  48. Robinson, C. A., T. J. Thom & M. C. Lucas, 2000. Ranging behaviour of a large freshwater invertebrate, the white-clawed crayfish Austropotamobius pallipes. Freshwater Biology 44: 509–521.CrossRefGoogle Scholar
  49. Rudolph, E. H. & K. A. Crandall, 2012. A new species of burrowing crayfish, Virilastacus jarai (Crustacea, Decapoda, Parastacidae) from central-southern Chile. Proceedings of the Biological Society of Washington 125: 258–275.CrossRefGoogle Scholar
  50. Rudolph, E. H. & A. Verdi, 2010. Intersexuality in the burrowing crayfish, Parastacus pilimanus (von Martens, 1869) (Decapoda, Parastacidae). Crustaceana 83: 73–87.CrossRefGoogle Scholar
  51. Santos, S., L. Ayres-Peres, R. C. F. Cardoso & C. C. Sokolowicz, 2008. Natural diet of the freshwater anomuran Aegla longirostri (Crustacea, Anomura, Aeglidae). Journal of Natural History 42: 1027–1037.CrossRefGoogle Scholar
  52. Schofield, P. J., 2003. Habitat selection of two gobies (Microgobius gulosus, Gobiosoma robustum): influence of structural complexity, competitive interactions, and presence of a predator. Journal of Experimental Marine Biology and Ecology 288: 125–137.CrossRefGoogle Scholar
  53. Scopel, D. A., W. J. Golet & W. H. Waston III, 2009. Home range dynamics of the American lobster, Homarus americanus. Marine and Freshwater Behaviour and Physiology 42: 63–80.CrossRefGoogle Scholar
  54. Sokolowicz, C. C., L. Ayres-Peres & S. Santos, 2007. Atividade nictimeral e tempo de digestão de Aegla longirostri (Crustacea, Decapoda, Anomura). Iheringia Série Zoologia 97: 235–238.CrossRefGoogle Scholar
  55. Sprent, J. & S. C. Nicol, 2012. Influence of habitat on home-range size in the short-beaked echidna. Australian Journal of Zoology 60: 46–53.CrossRefGoogle Scholar
  56. Tokeshi, M., 1999. Species Coexistence. Blackwell, Oxford.Google Scholar
  57. Usio, N. & C. R. Townsend, 2004. Roles of crayfish: consequences of predation and bioturbation for stream invertebrates. Ecology 85: 807–822.CrossRefGoogle Scholar
  58. White, G. C. & R. A. Garrott, 1990. Analysis of Wildlife Radio-Tracking Data. Academic Press Inc., San Diego.Google Scholar
  59. Wiens, A. W. & K. B. Armitage, 1961. The oxygen consumption of the crayfish Orconectes immunis and Orconectes nais in response to temperature and oxygen saturation. Physiological Zoology 34: 39–54.Google Scholar
  60. Zimmermann, B. L., A. W. Aued, S. Machado, D. Manfio, L. P. Scarton & S. Santos, 2009. Behavioral repertory of Trichodactylus panoplus (Crustacea: Trichodactylidae) under laboratory conditions. Zoologia 26: 5–11.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Joele S. Baumart
    • 1
  • Marcelo M. Dalosto
    • 1
  • Alberto S. Gonçalves
    • 1
  • Alexandre V. Palaoro
    • 1
  • Sandro Santos
    • 1
  1. 1.Núcleo de Estudo em Biodiversidade Aquática, Programa de Pós-Graduação em Biodiversidade AnimalUniversidade Federal de Santa Maria, Centro de Ciências Naturais e ExatasSanta MariaBrazil

Personalised recommendations