Skip to main content

Advertisement

Log in

Changes in epilithic biomasses and invertebrate community structure over a deposit metal concentration gradient in upland headwater streams

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Stream bed metal deposits affect the taxon richness, density and taxonomic diversity of primary and secondary producers by a variety of direct or indirect abiotic and biotic processes but little is known about the relative importance of these processes over a deposit metal concentration gradient. Inorganic matter (IM), algal and non-photosynthetic detrital (NPD) dry biomasses were estimated for 10 monthly samples, between 2007 and 2008, from eight sites differing in deposit density. Invertebrate abundance, taxon richness and composition were also determined. Relations between these variables were investigated by canonical correspondence analysis (CCA), generalized estimating equation models and path analysis. The first CCA axis correlates with deposit density and invertebrate abundance, with lumbriculids and chironomids increasing in abundance with deposit density and all other taxa declining. Community structure changes significantly above a deposit density of approximately 8 mg cm−2, when algal biomass, invertebrate richness and diversity decline. Invertebrate richness and diversity were determined by direct effects of NPD biomass and indirect effects of IM. Algal biomass only had an effect on invertebrate abundance. Possible pH, oxygen, food and ecotoxicological effects of NPD biomass on the biota are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Biggs, B. J. F., 1996. Patterns in benthic algae of streams. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds) Algal ecology: freshwater benthic ecosystems. Academic Press, San Diego, 31–56.

  • Biggs, B. J. F. & M. E. Close, 1989. Periphyton biomass dynamics in gravel bed rivers: the relative effects of flows and nutrients. Freshwater Biology 22: 209–231.

    Article  CAS  Google Scholar 

  • Bott, T. L., J. K. Jackson, M. E. McTammany, J. D. Newbold, S. T. Rier, B. W. Sweeney & J. M. Battle, 2012. Abandoned coal mine drainage and its remediation: impacts on stream ecosystem structure and function. Ecological Applications 22: 2144–2163.

    Article  PubMed  Google Scholar 

  • Burnham, K. P. & D. R. Anderson, 1998. Model Selection and Inference: A Practical Information-Theoretic Approach. Springer-Verlag, New York.

    Book  Google Scholar 

  • Carpenter, K. D., 2003. Water-quality and algal conditions in the Clackamas River Basin, Oregon, and their relations to land and water management. US Geological Survey Water-Resources Investigations Report 02-4189: 114.

  • Carr, G. M., A. Morin & P. A. Chambers, 2005. Bacteria and algae in stream periphyton along a nutrient gradient. Freshwater Biology 50: 1337–1350.

    Article  Google Scholar 

  • Clark, J. R., K. L. Dickson & J. Cairns, 1979. Estimating aufwuchs biomass. In Weitzel, R. L. (ed.), Methods and Measurements of Periphyton Communities: A Review. American Society for Testing and Materials, Philadelphia: 116–141.

    Chapter  Google Scholar 

  • Clements, W. H., D. M. Carlisle, J. M. Lazorchak & P. C. Johnson, 2000. Heavy metals structure benthic communities in Colorado mountain streams. Ecological Applications 10: 626–638.

    Article  Google Scholar 

  • Crerar, D. A., G. W. Knox & J. L. Means, 1979. Biogeochemistry of bog iron in the New Jersey Pine Barrens. Chemical Geology 24: 111–135.

    Article  CAS  Google Scholar 

  • Croft, P. S., 1986. British Freshwater Invertebrates. Field Studies Council, Shrewsbury.

    Google Scholar 

  • Dalzell, D. J. B. & N. A. A. Macfarlane, 1999. The toxicity of iron to brown trout and effects on the gills: a comparison of two grades of iron sulphate. Journal of Fish Biology 55: 301–315.

    Article  CAS  Google Scholar 

  • Dills, G. & D. T. Rogers, 1974. Macroinvertebrate community structure as an indicator of acid mine pollution. Environmental Pollution 6: 239–262.

    Article  CAS  Google Scholar 

  • Dodds, W. K., J. R. Jones & E. B. Welch, 1998. Suggested classification of stream trophic state: distributions of temperate stream types by chlorophyll, total nitrogen, and phosphorus. Water Research 32: 1455–1462.

    Article  CAS  Google Scholar 

  • Dsa, J. V., K. S. Johnson, D. Lopez, C. Kanuckel & J. Tumlinson, 2008. Residual toxicity of acid mine drainage-contaminated sediment to stream macroinvertebrates: relative contribution of acidity vs. metals. Water, Air & Soil Pollution 194: 185–197.

    Article  CAS  Google Scholar 

  • Emerson, D., E. J. Fleming & J. M. McBeth, 2010. Iron-oxidizing bacteria: an environmental and genomic perspective. Annual Review of Microbiology 64: 561–583.

    Article  CAS  PubMed  Google Scholar 

  • Garson, G. D., 2013. Generalized Linear Models/Generalized Estimating Equations. Statistical Associates Publishing, Asheboro, NC.

    Google Scholar 

  • Gerhardt, A., 1992. Effects of subacute doses of iron (Fe) on Leptophlebia marginata (Insecta: Ephemeroptera). Freshwater Biology 27: 79–84.

    Article  CAS  Google Scholar 

  • Gerhardt, A., 1993. Review of impact of heavy metals on stream invertebrates with special emphasis on acid conditions. Water, Air & Soil Pollution 66: 289–314.

    CAS  Google Scholar 

  • Ghiorse, W. C., 1984. Biology of iron- and manganese-depositing bacteria. Annual Review of Microbiology 38: 515–550.

    Article  CAS  PubMed  Google Scholar 

  • Greenfield, J. P. & M. P. Ireland, 1978. A survey of the macrofauna of a coal-waste polluted Lancashire fluvial system. Environmental Pollution 16: 105–122.

    Article  CAS  Google Scholar 

  • Hickey, C. W. & W. H. Clements, 1998. Effects of heavy metals on benthic macroinvertebrate communities in New Zealand streams. Environmental Toxicology and Chemistry 17: 2338–2346.

    Article  CAS  Google Scholar 

  • Hill, B. H., W. T. Willingham, L. P. Parrish & B. H. McFarland, 2000. Periphyton community responses to elevated metal concentrations in a Rocky Mountain stream. Hydrobiologia 428: 161–169.

    Article  CAS  Google Scholar 

  • Hirst, H., I. Jüttner & S. J. Ormerod, 2002. Comparing the responses of diatoms and macroinvertebrates to metals in upland streams of Wales and Cornwall. Freshwater Biology 47: 1752–1765.

    Article  CAS  Google Scholar 

  • HMSO, 1978a. Iron in Raw and Potable Waters by Spectrophotometry (Using 2,4,6-Tripyridyl-1,3,5-triazine). Her Majesty’s Stationery Office, London.

    Google Scholar 

  • HMSO, 1978b. Manganese in Raw and Potable Waters by Spectrophotometry (Using Formaldoxime). Her Majesty’s Stationery Office, London.

    Google Scholar 

  • HMSO, 1980. Aluminium in Raw and Potable Waters by Spectrophotometry (Using Pyrocatechol Violet). Her Majesty’s Stationery Office, London.

    Google Scholar 

  • Hünken, A. & M. Mutz, 2007. On the ecology of the filter-feeding Neureclipsis bimaculata (Trichoptera, Polycentropodidae) in an acid and iron rich post-mining stream. Hydrobiologia 592: 135–150.

    Article  Google Scholar 

  • Jarvis, A. P. & P. L. Younger, 1997. Dominating chemical factors in mine water induced impoverishment of the invertebrate fauna of two streams in the Durham Coalfield, UK. Chemistry and Ecology 13: 249–270.

    Article  CAS  Google Scholar 

  • Kimball, B. A., R. L. Runkel, K. Walton-Day & K. E. Bencala, 2002. Assessment of metal loads in watersheds affected by acid mine drainage using tracer injection and synoptic sampling: Cement Creek, Colorado, USA. Applied Geochemistry 17: 1183–1207.

    Article  CAS  Google Scholar 

  • Konhauser, K. O., 1998. Diversity of bacterial iron mineralization. Earth-Science Reviews 43: 91–121.

    Article  CAS  Google Scholar 

  • Lamberti, G. A. & W. Moore, 1984. Aquatic insects as primary consumers. In Resh, V. H. & D. M. Rosenberg (eds), The Ecology of Aquatic Insects. Praeger, New York: 164–195.

    Google Scholar 

  • Lamberti, G. A. & V. H. Resh, 1985. Comparability of introducing tiles and natural substrates for sampling lotic bacteria, algae and macroinvertebrates. Freshwater Biology 15: 21–30.

    Article  Google Scholar 

  • Layer, K., A. G. Hildrew & G. Woodward, 2013. Grazing and detritivory in 20 stream food webs across a broad pH gradient. Oecologia 171: 459–471.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ledger, M. E. & A. G. Hildrew, 1998. Temporal and spatial variation in the epilithic biofilm of an acid stream. Freshwater Biology 40: 655–670.

    Article  Google Scholar 

  • Ledger, M. E. & A. G. Hildrew, 2000. Herbivory in an acid stream. Freshwater Biology 43: 545–556.

    Article  Google Scholar 

  • Ledger, M. E. & A. G. Hildrew, 2005. The ecology of acidification and recovery: changes in herbivore-algal food web linkages across a stream pH gradient. Environmental Pollution 137: 103–111.

    Article  CAS  PubMed  Google Scholar 

  • Letterman, R. D. & W. J. Mitsch, 1978. Impact of mine drainage on a mountain stream in Pennsylvania. Environmental Pollution 17: 53–73.

    Article  CAS  Google Scholar 

  • Macintosh, K. A. & D. Griffiths, 2013. Catchment and in-stream influences on metal concentration and ochre deposit density in upland streams, Northern Ireland. Environmental Earth Sciences 70: 3023–3030.

    Article  CAS  Google Scholar 

  • Macintosh, K. A. & D. Griffiths, 2014. Spatial and temporal influences of in-stream factors on the chemistry and epilithic biomasses of upland stream metal deposits. Aquatic Sciences 76: 331–338.

    Article  CAS  Google Scholar 

  • Magurran, A. E., 1988. Ecological Diversity and Its Measurement. Chapman & Hall, London.

    Book  Google Scholar 

  • Malmqvist, B. & P. Hoffsten, 1999. Influence of drainage from old mine deposits on benthic macroinvertebrate communities in Central Swedish streams. Water Research 33: 2415–2423.

    Article  CAS  Google Scholar 

  • Maltby, L. & M. Crane, 1994. Responses of Gammarus pulex (Amphipoda, Crustacea) to metalliferous effluents: identification of toxic components and the importance of interpopulation variation. Environmental Pollution 84: 44–52.

    Article  Google Scholar 

  • Marker, A. F. H., C. A. Crowther & R. J. M. Gunn, 1980. Methanol and acetone as solvents for estimating chlorophyll a and phaeopigments by spectrophotometry. Archiv für Hydrobiologie Beiheft Ergebnisse der Limnologie 14: 52–69.

    CAS  Google Scholar 

  • Mason, C. F., 1996. Biology of Freshwater Pollution, 3rd ed. Longman, Harlow.

    Google Scholar 

  • Mayes, W. M., E. Gozzard, H. A. B. Potter & A. P. Jarvis, 2008. Quantifying the importance of diffuse minewater pollution in a historically heavily coal mined catchment. Environmental Pollution 151: 165–175.

    Article  CAS  PubMed  Google Scholar 

  • McCune, B. & M. J. Mefford, 2006. PC-ORD. Multivariate Analysis of Ecological Data. MjM Software, Gleneden Beach, OR.

    Google Scholar 

  • McKnight, D. M. & G. L. Feder, 1984. The ecological effect of acid conditions and precipitation of hydrous metal oxides in a Rocky Mountain stream. Hydrobiologia 119: 129–138.

    Article  CAS  Google Scholar 

  • Mellanby, H., 1963. Animal Life in Fresh Water, 6th ed. Chapman & Hall, London.

    Google Scholar 

  • Merritt, R. W. & K. W. Cummins, 1996. An Introduction to the Aquatic Insects of North America, 3rd ed. Kendall/Hunt Publishing Co, Dubuque, IA.

    Google Scholar 

  • Mihuc, T. B., 1997. The functional trophic role of lotic primary consumers: generalist var. specialist strategies. Freshwater Biology 37: 455–462.

    Article  Google Scholar 

  • Mulholland, P. J., C. T. Driscoll, J. W. Elwood, M. P. Osgood, A. V. Palumbo, A. D. Rosemond, M. E. Smith & C. Schofield, 1992. Relationships between stream acidity and bacteria, macroinvertebrates, and fish: a comparison of north temperate and south temperate mountain streams, USA. Hydrobiologia 239: 7–24.

    Article  CAS  Google Scholar 

  • Murphy, J. & J. P. Riley, 1958. A single-solution method for the determination of soluble phosphorus in sea water. Journal of the Marine Biological Association of the United Kingdom 37: 9–14.

    Article  CAS  Google Scholar 

  • Murphy, J. & J. P. Riley, 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27: 31–36.

    Article  CAS  Google Scholar 

  • Neal, C., S. Lofts, C. D. Evans, B. Reynolds, E. Tipping & M. Neal, 2008. Increasing iron concentrations in UK upland waters. Aquatic Geochemistry 14: 263–288.

    Article  CAS  Google Scholar 

  • Niyogi, D. K., D. M. McKnight & W. M. Lewis, 1999. Influences of water and substrate quality for periphyton in a montane stream affected by acid mine drainage. Limnology and Oceanography 44: 804–809.

    Article  CAS  Google Scholar 

  • Nyberg, P., P. Andersson, E. Degerman, H. Borg & E. Olofsson, 1995. Labile inorganic manganese – an overlooked reason for fish mortality in acidified streams? Water, Air and Soil Pollution 85: 333–340.

    Article  CAS  Google Scholar 

  • Peuranen, S., P. J. Vuorinen, M. Vuorinen & A. Hollender, 1994. The effects of iron, humic acids and low pH on the gills and physiology of brown trout (Salmo trutta). Annales Zoologici Fennici 31: 389–396.

    Google Scholar 

  • Pizarro, H. & A. Vinocur, 2000. Epilithic biomass in an outflow stream at Potter Peninsula, King George Island, Antarctica. Polar Biology 23: 851–857.

    Article  Google Scholar 

  • Prange, H., 2007. Ochre Pollution as an Ecological Problem in the Aquatic Environment: Solution Attempts from Denmark. Edmund Siemers-Stiftung, Hamburg.

    Google Scholar 

  • Quinn, G. P. & M. J. Keogh, 2002. Experimental Design and Data Analysis for Biologists. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Rasmussen, K. & C. Lindegaard, 1988. Effects of iron compounds on macroinvertebrate communities in a Danish lowland river system. Water Research 22: 1101–1108.

    Article  CAS  Google Scholar 

  • Rentz, J. A., I. P. Turner & J. L. Ullman, 2009. Removal of phosphorus from solution using biogenic iron oxides. Water Research 43: 2029–2035.

    Article  CAS  PubMed  Google Scholar 

  • Rice, E. W., R. B. Baird, A. E. Eaton & L. S. Clesceri, 2012. Standard Methods for the Examination of Water and Wastewater, 22nd ed. American Public Health Association, Washington, DC.

    Google Scholar 

  • Roden, E. E., 2012. Microbial iron-redox cycling in subsurface environments. Biochemical Society Transactions 40: 1249–1256.

    Article  CAS  PubMed  Google Scholar 

  • Rosemond, A. D., S. R. Reice, J. W. Elwood & P. J. Mulholland, 1992. The effects of stream acidity on benthic invertebrate communities in the south-eastern United States. Freshwater Biology 27: 193–209.

    Article  CAS  Google Scholar 

  • Rosenberg, D. M. & V. H. Resh (eds), 1993. Freshwater Biomonitoring and Benthic Macroinvertebrates. Chapman & Hall, New York.

    Google Scholar 

  • Scullion, J. & R. W. Edwards, 1980. The effects of coal industry pollutants on the macroinvertebrate fauna of a small river in the South Wales coalfield. Freshwater Biology 10: 141–162.

    Article  CAS  Google Scholar 

  • Sheldon, S. P. & D. K. Skelly, 1990. Differential colonization and growth of algae and ferromanganese-depositing bacteria in a mountain stream. Journal of Freshwater Ecology 5: 475–485.

    Article  CAS  Google Scholar 

  • Sheldon, S. P. & T. A. Wellnitz, 1998. Do bacteria mediate algal colonization in iron-enriched streams? Oikos 83: 85–92.

    Article  CAS  Google Scholar 

  • Smock, L. A., 1983. The influence of feeding habits on whole-body metal concentrations in aquatic insects. Freshwater Biology 13: 301–311.

    Article  CAS  Google Scholar 

  • Stubblefield, W. A., S. F. Brinkman, P. H. Davies, T. D. Garrison, J. R. Hockett & M. W. Mcintyre, 1997. Effects of water hardness on the toxicity of manganese to developing brown trout (Salmo trutta). Environmental Toxicology and Chemistry 16: 2082–2089.

    Article  CAS  Google Scholar 

  • Stumm, W. & J. J. Morgan, 1996. Aquatic Chemistry, 3rd ed. Wiley, New York.

    Google Scholar 

  • Sutcliffe, D. W. & A. G. Hildrew, 1989. Invertebrate communities in acid streams. In Morris, R., E. W. Taylor, D. J. A. Brown & J. A. Brown (eds), Acid Toxicity and Aquatic Animals. Society for Experimental Biology Seminar Series. Cambridge University Press, Cambridge: 13–29.

    Chapter  Google Scholar 

  • Tebo, B. M., J. R. Bargar, B. G. Clement, G. J. Dick, K. J. Murray, D. Parker, R. Verity & S. M. Webb, 2004. Biogenic manganese oxides: properties and mechanisms of formation. Annual Review of Earth and Planetary Science 32: 287–328.

    Article  CAS  Google Scholar 

  • Townsend, C. R., A. G. Hildrew & J. Francis, 1983. Community structure in some southern English streams: the influence of physicochemical factors. Freshwater Biology 13: 521–544.

    Article  Google Scholar 

  • Verb, R. G. & M. L. Vis, 2000. Comparison of benthic diatom assemblages from streams draining abandoned and reclaimed coal mines and nonimpacted sites. Journal of the North American Benthological Society 19: 274–288.

    Article  Google Scholar 

  • Verberk, W. C. E. P., P. J. J. van den Munckhof & B. J. A. Pollux, 2012. Niche segregation in two closely related species of stickleback along a physiological axis: explaining multidecadal changes in fish distribution from iron-induced respiratory impairment. Aquatic Ecology 46: 241–248.

    Article  PubMed Central  PubMed  Google Scholar 

  • Vuori, K.-M., 1995. Direct and indirect effects of iron on river ecosystems. Annales Zoologici Fennici 32: 317–329.

    Google Scholar 

  • Weitzel, R. L., S. L. Sanocki & H. Holecek, 1979. Sample replication of periphyton collected from artificial substrates. In Weitzel, R. L. (ed.), Methods and Measurements of Periphyton Communities. American Society for Testing and Materials, Philadelphia: 90–115.

    Chapter  Google Scholar 

  • Wellnitz, T. A. & S. P. Sheldon, 1995. The effects of iron and manganese on diatom colonization in a Vermont stream. Freshwater Biology 34: 465–470.

    Article  CAS  Google Scholar 

  • Wellnitz, T. A., K. A. Grief & S. P. Sheldon, 1994. Response of macroinvertebrates to blooms of iron-depositing bacteria. Hydrobiologia 281: 1–17.

    Article  CAS  Google Scholar 

  • Withers, P. J. A. & H. P. Jarvie, 2008. Delivery and cycling of phosphorus in rivers: a review. Science of the Total Environment 400: 379–395.

    Article  CAS  PubMed  Google Scholar 

  • Woodcock, T. S. & A. D. Huryn, 2005. Leaf litter processing and invertebrate assemblages along a pollution gradient on a Maine (USA) headwater stream. Environmental Pollution 134: 363–375.

    Article  CAS  PubMed  Google Scholar 

  • Younger, P. L., 2001. Mine water pollution in Scotland: nature, extent and preventative strategies. Science of the Total Environment 265: 309–326.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Katrina Macintosh would like to thank the funding and facilities provided for this study by a Department for Employment and Learning studentship at the University of Ulster. We are grateful to Joerg Arnscheidt, Tom Bott, Steve Ormerod and a referee for helpful comments on earlier drafts of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrina Ann Macintosh.

Additional information

Handling editor: Sonja Stendera

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 121 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macintosh, K.A., Griffiths, D. Changes in epilithic biomasses and invertebrate community structure over a deposit metal concentration gradient in upland headwater streams. Hydrobiologia 760, 159–169 (2015). https://doi.org/10.1007/s10750-015-2323-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2323-0

Keywords