Skip to main content

Advertisement

Log in

Developmental trade-offs in Southern Ocean mollusc kleptoparasitic species

  • BIOLOGY OF THE ROSS SEA
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Connectivity is a key factor in determining the genetic structure of marine populations, and type and duration of the larval phase strongly affect dispersal abilities of species. In Antarctica, invertebrates show a higher proportion of species with limited pelagic dispersal, and any exception to this pattern is worthy of attention. Capulidae is a family of kleptoparasitic gastropods, with two larval strategies. Most species have a peculiar planktotrophic larva, the ‘echinospira’, which enables a long pelagic dispersal; a minority of species undergo lecithotrophic development. We provide the first molecular phylogenetic framework for the family and define the Antarctic species based on molecular data. Based on this information, and on larval shell morphology, we tested the hypothesis that capulid species with high dispersal capacities via planktotrophic larvae display high genetic connectivity over long distances. Our data showed that whilst larval planktotrophy is the predominant larval strategy of the family worldwide, the vast majority of Antarctic species exhibit non-planktotrophic development. The unique exception, Capulus subcompressus, showed high genetic connectivity between the Ross Sea and Weddell Sea-Antarctic Peninsula. In all other Antarctic species, environmental constraints selected towards intracapsular metamorphosis, despite the associated limits of dispersal and finding a host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Andersen, O. G. N., 1984. Meroplankton in Jørgen Brønlund Fjord, North Greenland. Meddelelser om Grønland [Bioscience] 12: 1–25.

    CAS  Google Scholar 

  • Bandel, K. & D. T. Dockery III, 2012. Protoconch characters of Late Cretaceous Latrogastropoda (Neogastropoda and Neomesogastropoda) as an aid in the reconstruction of the phylogeny of the Neogastropoda. Freiberger Forschungshefte C 542: 93–128.

    Google Scholar 

  • Bazinet, A. L., D. J. Zwickl & M. P. Cummings, 2014. A gateway for phylogenetic analysis powered by grid computing featuring GARLI 2.0. Systematic Biology 63: 812–818.

    Article  PubMed Central  PubMed  Google Scholar 

  • Beu, A. G., 2004. Marine Mollusca of oxygen isotope stages of the last 2 million years in New Zealand. Part I: revised generic position and recognition of warm-water and cool-water migrants. Journal of the Royal Society of New Zealand 34: 111–265.

    Article  Google Scholar 

  • Bouchet, P., 1989. A review of poecilogony in gastropods. Journal of Molluscan Studies 55: 67–78.

    Article  Google Scholar 

  • Bouchet, P. & A. Warén, 1993. Revision of the northeast Atlantic bathyal and abyssal Mesogastropoda. Società Italiana di Malacologia 3: 579–840.

    Google Scholar 

  • Cardoso, A., A. Serrano & A. P. Vogler, 2009. Morphological and molecular variation in tiger beetles of the Cicindela hybrida complex: is an ‘integrative taxonomy’ possible? Molecular Ecology 18: 648–664.

    Article  CAS  PubMed  Google Scholar 

  • Castresana, J., 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17: 540–552.

    Article  CAS  PubMed  Google Scholar 

  • Clement, M., D. Posada & K. A. Crandall, 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology 9: 1657–1659.

    Article  CAS  PubMed  Google Scholar 

  • Collin, R., 2003a. Phylogenetic relationships among calyptraeid gastropods and their implications for the biogeography of marine speciation. Systematic Biology 52: 618–640.

    Article  PubMed  Google Scholar 

  • Collin, R., 2003b. The utility of morphological characters in gastropod phylogenetics: an example from the Calyptraeidae. Biological Journal of the Linnean Society of London 78: 541–593.

    Article  Google Scholar 

  • Cowen, R. K., C. B. Paris & A. Srinivasan, 2006. Scaling of connectivity in marine populations. Science 311: 522–527.

    Article  CAS  PubMed  Google Scholar 

  • Drummond, A. J., B. Ashton, M. Cheung, J. Helen, M. Kearse, R. Moir, S. Stones-Havas, T. Thierer & A. Wilson, 2009. Geneious v 4.7. Biomatters, Ltd., Auckland, New Zealand. http://www.geneious.com/.

  • Esselstyn, J. A., B. J. Evans, J. L. Sedlock, F. A. Anwarali Khan & L. R. Heaney, 2012. Single-locus species delimitation: a test of the mixed Yule-coalescent model, with an empirical application to Philippine round-leaf bats. Proceedings of the Royal Society B 279: 3678–3686.

    Article  PubMed Central  PubMed  Google Scholar 

  • Folmer, O., M. Black, W. Hoeh, R. Lutz & R. Vrijenhoek, 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294–299.

    CAS  PubMed  Google Scholar 

  • Fonseca, G., S. Derycke & T. Moens, 2008. Integrative taxonomy in two free-living nematode species complexes. Biological Journal of the Linnean Society 94: 737–753.

    Article  Google Scholar 

  • Gallego, R., S. Lavery & M. A. Sewell, 2014. The meroplankton community of the oceanic Ross Sea during late summer. Antarctic Science 26: 345–360.

    Article  Google Scholar 

  • Garrard, T. A., 1969. Amendments to Iredale and McMichael’s “Reference list of the marine Mollusca of New South Wales”, 1962. Journal of the Malacological Society of Australia 1: 3–11.

    Google Scholar 

  • Gofas, S., 2015. Capulidae Fleming, 1822. Accessed through World Register of Marine Species at http://www.marinespecies.org/aphia.php?p=taxdetails&id=139 on 2015-4-05.

  • Graham, A., 1988. Molluscs: Prosobranchs and Pyramidellid Gastropods: Keys and Notes for the Identification of the Species, Vol. 2. Brill Archive, London.

    Google Scholar 

  • Habe, T. & T. Igarashi, 1967. A list of marine molluscan shells in the Fisheries Museum, Faculty of Fisheries, Hokkaido University (Kawasaki collection and specimens collected by the Marine Zoological Laboratory). Bulletin of the Faculty of Fisheries Hokkaido University 6: 1–56.

    Google Scholar 

  • Hain, S. & P. M. Arnaud, 1992. Notes on the reproduction of high-Antarctic molluscs from the Weddell Sea. Polar Biology 12: 303–312.

    Article  Google Scholar 

  • Hayashi, S., 2003. The molecular phylogeny of the Buccinidae (Caenogastropoda: Neogastropoda) as inferred from the complete mitochondrial 16S rRNA gene sequences of selected representatives. Molluscan Research 25: 85–98.

    Google Scholar 

  • Heimeier, D., S. Lavery & M. A. Sewell, 2010. Using DNA barcoding and phylogenetics to identify Antarctic invertebrate larvae: lessons from a large scale study. Marine Genomics 3: 165–177.

    Article  PubMed  Google Scholar 

  • Huelsenbeck, J. P. & F. Ronquist, 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics Application Note 17: 754–755.

    Article  CAS  Google Scholar 

  • Iyengar, E. V., 2002. Sneaky snails and wasted worms: kleptoparasitism by Trichotropis cancellata (Mollusca, Gastropoda) on Serpula columbiana (Annelida, Polychaeta). Marine Ecology Progress Series 244: 153–162.

    Article  Google Scholar 

  • Iyengar, E. V., 2004. Host-specific performance and host use in the kleptoparasitic marine snail Trichotropis cancellata. Oecologia 138: 628–639.

    Article  PubMed  Google Scholar 

  • Iyengar, E. V., 2005. Seasonal feeding-mode changes in the marine facultative kleptoparasite Trichotropis cancellata (Gastropoda, Capulidae): trade-offs between trophic strategy and reproduction. Canadian Journal of Zoology 83: 1097–1111.

    Article  Google Scholar 

  • Iyengar, E. V., 2008. Kleptoparasitic interactions throughout the animal kingdom and a re-evaluation, based on participant mobility, of the conditions promoting the evolution of kleptoparasitism. Biological Journal of the Linnean Society 93: 745–762.

    Article  Google Scholar 

  • Jensen, J. L., A. J. Bohonak & S. T. Kelley, 2005. Isolation by distance, web service. BMC Genetics 6: 13.

    Article  PubMed Central  PubMed  Google Scholar 

  • Jones, N. S., 1949. Biological note on Capulus ungaricus. Annual Report of the Liverpool Marine Biology Committee and their Port Erin (isle of Man) [1949]: 29–30.

  • Katoh, K. & H. Toh, 2008. Recent developments in the MAFFT multiple sequence alignment program. Briefings in Bioinformatics 9: 286–298.

    Article  CAS  PubMed  Google Scholar 

  • Katoh, K., K. Misawa, K. Kuma & T. Miyata, 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30: 3059–3066.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Knowlton, N., 2000. Molecular genetic analyses of species boundaries in the sea. Hydrobiologia 420: 73–90.

    Article  CAS  Google Scholar 

  • Kosuge, S. & S. Hayashi, 1967. Notes on the feeding habits of Capulus dilatatus. Scientific Reports of the Yokosuka City Museum 13: 45–54.

    Google Scholar 

  • Layton, K. K., A. L. Martel & P. D. Hebert, 2014. Patterns of DNA barcode variation in Canadian marine molluscs. PLoS ONE 9: E95003.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lebour, M. V., 1937. The eggs and larvae of British prosobranchs with special reference to those living in the plankton. Journal of the Marine Biological Association of the United Kingdom 22: 105–166.

    Article  Google Scholar 

  • Levin, L. A., 2006. Recent progress in understanding larval dispersal: new directions and digressions. Integrative and Comparative Biology 46: 282–297.

    Article  CAS  PubMed  Google Scholar 

  • Librado, P. & J. Rozas, 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452.

    Article  CAS  PubMed  Google Scholar 

  • Malaquias, M. A. E. & D. G. Reid, 2009. Tethyan vicariance, relictualism and speciation: evidence from a global molecular phylogeny of the opisthobranch genus Bulla. Journal of Biogeography 36: 1760–1777.

    Article  Google Scholar 

  • Mantel, N., 1967. The detection of disease clustering and a generalized regression approach. Cancer Research 27: 209–220.

    CAS  PubMed  Google Scholar 

  • Matsukuma, A., 2003. 77 Additional Marine Bivalve Species from Wakayama Prefecture. A supplement to “A Catalogue of Molluscs of Wakayama Prefecture, the Province of KII-I”, by T. Habe. Publications of the Seto Marine Biological Laboratory, Special Publication Series 7: 9–32.

    Google Scholar 

  • Miller, M. A., W. Pfeiffer & T. Schwartz, 2010. Creating the CIPRES science gateway for inference of large phylogenetic trees. Gateway Computing Environments Workshop (GCE) 2010: 1–8.

    Article  Google Scholar 

  • Nation, J. L., 1983. A new method using hexamethyldisilazane for preparation of soft insect tissues s for scanning electron microscopy. Stain Technology 58: 347–351.

    CAS  PubMed  Google Scholar 

  • Numanami, H., 1996. Taxonomic study on Antarctic gastropods collected by Japanese Antarctic Research Expeditions. Memoirs of the National Institute of Polar Research Ser. E Biology and Medical Science 39: 1–244.

    Google Scholar 

  • Nuñez, J. J., A. Vejar-Pardo, B. E. Guzman, E. H. Barriga & C. S. Gallardo, 2012. Phylogenetic and mixed Yule-coalescent analyses reveal cryptic lineages within two South American marine snails of the genus Crepipatella (Gastropoda: Calyptraeidae). Invertebrate Biology 131: 301–311.

    Article  Google Scholar 

  • Oliverio, M., 1996a. Life-histories, speciation and biodiversity in Mediterranean prosobranchs gastropods. Vie et Mileu 46: 163–169.

    Google Scholar 

  • Oliverio, M., 1996b. Contrasting developmental strategies and speciation in N.E. Atlantic prosobranchs: a preliminary analysis. In Taylor, J. D. (ed.), Origin and Evolutionary Radiation of the Mollusca, Vol. 22. Oxford University Press, Oxford: 261–266.

    Google Scholar 

  • Oliverio, M., 1997. Global biodiversity and life-history evolution in prosobranchs gastropods. Iberus 16: 73–79.

    Google Scholar 

  • Oliverio, M. & P. Mariottini, 2001. A molecular framework for the phylogeny of Coralliophila and related muricoids. Journal of Molluscan Studies 67: 215–224.

    Article  Google Scholar 

  • Orr, V., 1962. The drilling habit of Capulus danieli (Crosse) (Mollusca: Gastropoda). The Veliger 5: 63–67.

    Google Scholar 

  • Orton, J. H., 1949. Notes on the feeding habit of Capulus ungaricus. Report of the Marine Biological Station, Pt Erin 61: 29–30.

    Google Scholar 

  • Padial, J. M., A. Miralles, I. De la Riva & M. Vences, 2010. The integrative future of taxonomy. Frontiers in Zoology 7: 16.

    Article  PubMed Central  PubMed  Google Scholar 

  • Palumbi, S. R., 1996. Nucleic acids II: the polymerase chain reaction. Molecular Systematics 2: 205–247.

    Google Scholar 

  • Palumbi, S. R., F. Cipriano & M. P. Hare, 2001. Predicting nuclear gene coalescence from mitochondrial data: the three-times rule. Evolution 55: 859–868.

    Article  CAS  PubMed  Google Scholar 

  • Pante, E., N. Puillandre, A. Viricel, S. Arnaud-Haond, D. Aurelle, M. Castelin, A. Chenuil, C. Destombe, D. Forcioli, M. Valero, F. Viard & S. Samadi, 2015. Species are hypotheses: avoid connectivity assessments based on pillars of sand. Molecular Ecology 24: 525–544.

    Article  PubMed  Google Scholar 

  • Parries, S. C. & L. R. Page, 2003. Larval development and metamorphic transformation of the feeding system in the kleptoparasitic snail Trichotropis cancellata (Mollusca, Caenogastropoda). Canadian Journal of Zoology 81: 1650–1661.

    Article  Google Scholar 

  • Pearse, J. S. & S. J. Lockhart, 2004. Reproduction in cold water: paradigm changes in the 20th century and a role for cidaroid sea urchins. Deep Sea Research Part II: Topical Studies in Oceanography 51: 1533–1549.

    Article  Google Scholar 

  • Peck, L. S., A. Clarke & A. L. Chapman, 2006. Metabolism and development of pelagic larvae of Antarctic gastropods with mixed reproductive strategies. Marine Ecology Progress Series 318: 213–220.

    Article  Google Scholar 

  • Pelseneer, P., 1903. Mollusques (Amphineures, Gastropodes et Lamellibranches). Resultats du Voyage du S.Y. Belgica en 1897–1898–1899. Rapports Scientifiques, Zoologie

  • Picken, G. B., 1980. Reproductive adaptations of Antarctic benthic invertebrates. Biological Journal of the Linnean Society 14: 67–75.

    Article  Google Scholar 

  • Pilkinton, M. C., 1974. The eggs and hatching stages of some New Zealand prosobranch molluscs. Journal of the Royal Society of New Zealand 4: 411–431.

    Article  Google Scholar 

  • Ponder, W. F. & D. R. Lindberg, 2008. Phylogeny and Evolution of the Mollusca. University of California Press, Berkeley.

    Book  Google Scholar 

  • Ponder, W. F. & A. Warén, 1988. Classification of the Caenogastropoda and Heterostropha – a list of the family-group and higher category names. Malacological Review 4: 288–326.

    Google Scholar 

  • Posada, D., 2008. jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 1253–1256.

    Article  CAS  PubMed  Google Scholar 

  • Poulin, E. & J.-P. Féral, 1996. Why there are so many species of brooding Antarctic echinoids? Evolution 50: 820–830.

    Article  Google Scholar 

  • Poulin, E., A. T. Palma & J.-P. Féral, 2002. Evolutionary versus ecological success in Antarctic benthic invertebrates. Trends in Ecology & Evolution 17: 218–222.

    Article  Google Scholar 

  • Puillandre, N., A. Lambert, S. Brouillet & G. Achaz, 2012a. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 21: 1864–1877.

    Article  CAS  PubMed  Google Scholar 

  • Puillandre, N., M. V. Modica, Y. Zhang, L. Sirovich, M. C. Boisselier, C. Cruaud, M. Holford & S. Samadi, 2012b. b. Large-scale species delimitation method for hyperdiverse groups. Molecular Ecology 21: 2671–2691.

    Article  CAS  PubMed  Google Scholar 

  • Rambaut, A., M. A. Suchard, D. Xie & A. J. Drummond, 2014. Tracer v1.6. http://beast.bio.ed.ac.uk/Tracer.

  • Reid, D. G., K. Lal, J. Mackenzie-Dodds, F. Kaligis, D. T. J. Littlewood, et al., 2006. Comparative phylogeography and species boundaries in Echinolittorina snails in the central Indo-West Pacific. Journal of Biogeography 33: 990–1006.

    Article  Google Scholar 

  • Savazzi, E., 1990. Biological aspects of theoretical shell morphology. Lethaia 23: 195–212.

    Article  Google Scholar 

  • Schiaparelli, S., 2014. Biotic interactions. In De Broyer, C., P. Koubbi, H. J. Griffiths, B. Raymond, C. d’Udekem d’Acoz, A. Van de Putte, B. Danis, B. David, S. Grant, J. Gutt, C. Held, G. Hosie, F. Huettmann, A. Post & Y. Ropert-Coudert (eds), Biogeographic Atlas of the Southern Ocean. Scientific Committee on Antarctic Research. Scott Polar Research Institute, Cambridge: 245–252.

    Google Scholar 

  • Schiaparelli, S., R. Cattaneo-Vietti & M. Chiantore, 2000. Adaptive morphology of Capulus subcompressus Pelseneer, 1903 (Gastropoda: Capulidae) from Terra Nova Bay, Ross Sea (Antarctica). Polar Biology 23: 11–16.

    Article  Google Scholar 

  • Selkoe, K. A. & R. J. Toonen, 2011. Marine connectivity: a new look at pelagic larval duration and genetic metrics of dispersal. Marine Ecology Progress Series 436: 291–305.

    Article  Google Scholar 

  • Sewell, M. A., 2005. Examination of the meroplankton community in the south-western Ross Sea, Antarctica, using a collapsible plankton net. Polar Biology 28: 119–131.

    Article  Google Scholar 

  • Sharman, M., 1956. Note on Capulus ungaricus (L.). Journal of the Marine Biological Association of the UK 35: 445–450.

    Article  Google Scholar 

  • Stanwell-Smith, D., A. Hood & L. S. Peck, 1997. A Field Guide to the Pelagic Invertebrate Larvae of the Maritime Antarctic. British Antarctic Survey, Cambridge.

    Google Scholar 

  • Swofford, D. L., 2002. PAUP* beta version: Phylogenetic Analysis Using Parsimony (*and Other Methods). Sinauer Associated, Sunderland, MA.

    Google Scholar 

  • Takano, T. & Y. Kano, 2014. Molecular phylogenetic investigations of the relationships of the echinoderm-parasite family Eulimidae within Hypsogastropoda (Mollusca). Molecular Phylogenetics and Evolution 79: 258–269.

    Article  PubMed  Google Scholar 

  • Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei & S. Kumar, 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28: 2731–2739.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tanzler, R., K. Sagata, S. Surbakti, M. Balke & A. Riedel, 2012. DNA barcoding for community ecology – how to tackle a hyperdiverse. Mostly undescribed Melanesian Fauna. PLoS One 7(1): e28832.

    Article  PubMed Central  PubMed  Google Scholar 

  • ten Hove, H. A., 1994. The dualistic relation between molluscs and serpulid tube-worms. In Coomans-Eustatia, M., R. Moolenbeek, W. Los & P. Prins (eds), De horen en zijn echo. Stichting Libri Antilliani. Zoölogisch Museum, Amsterdam: 65–70.

    Google Scholar 

  • Thatje, S., 2012. Effects of capability for dispersal on the evolution of diversity in Antarctic Benthos. Integrative and Comparative Biology 52: 470–482.

    Article  PubMed  Google Scholar 

  • Thorson, G., 1935. Studies on the egg-capsules and development of Arctic marine prosobranchs. Meddelelser om Grønland 100: 1–71.

    Google Scholar 

  • Thorson, G., 1965. A neotenous dwarf-form of Capulus ungaricus (L.) (Gastropoda, Prosobranchia) commensalistic on Turritella communis Risso. Ophelia 2: 175–210.

    Article  Google Scholar 

  • Warén, A. & P. Bouchet, 1991. Systematic position and revision of Haloceras Dall, 1889 (Caenogastropoda, Haloceratidae fam. nov.). Résultats des Campagnes Musorstom 7: 111–161.

    Google Scholar 

  • Warén, A., P. M. Arnaud & J. R. Cantera, 1986. Description of two new gastropods of the Trichotropidae from Kerguelen and Crozet Islands (south Indian Ocean). The Veliger 29: 157–165.

    Google Scholar 

  • Wheeler, Q. & R. Meier, 2000. Species Concepts and Phylogenetic Theory: A Debate. Columbia University Press, New York.

    Google Scholar 

  • Yonge, C. M., 1938. Evolution of ciliary feeding in the Prosobranchia, with an account of feeding in Capulus ungaricus. Journal of the Marine Biological Association of the UK 22: 453–468.

    Article  Google Scholar 

  • Yonge, C. M., 1962. On the biology of the mesogastropod Trichotropis cancellata Hinds, a benthic indicator species. Biological Bulletin, Biological Laboratory Woods Hole 122: 160–181.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the PNRA for funding and logistic support during the Italian expedition XXVII and XXVIII (PNRA Project 2010/A1.10 “BAMBi” Barcoding of Antarctic Marine Biodiversity). Marine research activities during the TAN0402 “BioRoss” expedition have been jointly supported by Antarctica New Zealand, New Zealand Ministry of Primary Industries (MPI) and the National Institute of Water and Atmospheric research (NIWA). We thank the Alfred Wegener Institute (AWI) for funding and logistic support of the Polarstern cruise PS81, ANT XXIX/3. We are indebted to Claudio Ghiglione for the preparation of the map and to Walter Renda for help with collecting Capulus. We wish to thank Anders Warén and an anonymous reviewer for very constructive criticism of this manuscript. This is BAMBi contribution #9 and part of the integrated output from the SCAR-AntEco Science Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Oliverio.

Additional information

Guest editors: Diego Fontaneto & Stefano Schiaparelli / Biology of the Ross Sea and Surrounding Areas in Antarctica

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fassio, G., Modica, M.V., Alvaro, M.C. et al. Developmental trade-offs in Southern Ocean mollusc kleptoparasitic species. Hydrobiologia 761, 121–141 (2015). https://doi.org/10.1007/s10750-015-2318-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2318-x

Keywords

Profiles

  1. Maria Vittoria Modica
  2. Stefano Schiaparelli