Abstract
Connectivity is a key factor in determining the genetic structure of marine populations, and type and duration of the larval phase strongly affect dispersal abilities of species. In Antarctica, invertebrates show a higher proportion of species with limited pelagic dispersal, and any exception to this pattern is worthy of attention. Capulidae is a family of kleptoparasitic gastropods, with two larval strategies. Most species have a peculiar planktotrophic larva, the ‘echinospira’, which enables a long pelagic dispersal; a minority of species undergo lecithotrophic development. We provide the first molecular phylogenetic framework for the family and define the Antarctic species based on molecular data. Based on this information, and on larval shell morphology, we tested the hypothesis that capulid species with high dispersal capacities via planktotrophic larvae display high genetic connectivity over long distances. Our data showed that whilst larval planktotrophy is the predominant larval strategy of the family worldwide, the vast majority of Antarctic species exhibit non-planktotrophic development. The unique exception, Capulus subcompressus, showed high genetic connectivity between the Ross Sea and Weddell Sea-Antarctic Peninsula. In all other Antarctic species, environmental constraints selected towards intracapsular metamorphosis, despite the associated limits of dispersal and finding a host.






Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Andersen, O. G. N., 1984. Meroplankton in Jørgen Brønlund Fjord, North Greenland. Meddelelser om Grønland [Bioscience] 12: 1–25.
Bandel, K. & D. T. Dockery III, 2012. Protoconch characters of Late Cretaceous Latrogastropoda (Neogastropoda and Neomesogastropoda) as an aid in the reconstruction of the phylogeny of the Neogastropoda. Freiberger Forschungshefte C 542: 93–128.
Bazinet, A. L., D. J. Zwickl & M. P. Cummings, 2014. A gateway for phylogenetic analysis powered by grid computing featuring GARLI 2.0. Systematic Biology 63: 812–818.
Beu, A. G., 2004. Marine Mollusca of oxygen isotope stages of the last 2 million years in New Zealand. Part I: revised generic position and recognition of warm-water and cool-water migrants. Journal of the Royal Society of New Zealand 34: 111–265.
Bouchet, P., 1989. A review of poecilogony in gastropods. Journal of Molluscan Studies 55: 67–78.
Bouchet, P. & A. Warén, 1993. Revision of the northeast Atlantic bathyal and abyssal Mesogastropoda. Società Italiana di Malacologia 3: 579–840.
Cardoso, A., A. Serrano & A. P. Vogler, 2009. Morphological and molecular variation in tiger beetles of the Cicindela hybrida complex: is an ‘integrative taxonomy’ possible? Molecular Ecology 18: 648–664.
Castresana, J., 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17: 540–552.
Clement, M., D. Posada & K. A. Crandall, 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology 9: 1657–1659.
Collin, R., 2003a. Phylogenetic relationships among calyptraeid gastropods and their implications for the biogeography of marine speciation. Systematic Biology 52: 618–640.
Collin, R., 2003b. The utility of morphological characters in gastropod phylogenetics: an example from the Calyptraeidae. Biological Journal of the Linnean Society of London 78: 541–593.
Cowen, R. K., C. B. Paris & A. Srinivasan, 2006. Scaling of connectivity in marine populations. Science 311: 522–527.
Drummond, A. J., B. Ashton, M. Cheung, J. Helen, M. Kearse, R. Moir, S. Stones-Havas, T. Thierer & A. Wilson, 2009. Geneious v 4.7. Biomatters, Ltd., Auckland, New Zealand. http://www.geneious.com/.
Esselstyn, J. A., B. J. Evans, J. L. Sedlock, F. A. Anwarali Khan & L. R. Heaney, 2012. Single-locus species delimitation: a test of the mixed Yule-coalescent model, with an empirical application to Philippine round-leaf bats. Proceedings of the Royal Society B 279: 3678–3686.
Folmer, O., M. Black, W. Hoeh, R. Lutz & R. Vrijenhoek, 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294–299.
Fonseca, G., S. Derycke & T. Moens, 2008. Integrative taxonomy in two free-living nematode species complexes. Biological Journal of the Linnean Society 94: 737–753.
Gallego, R., S. Lavery & M. A. Sewell, 2014. The meroplankton community of the oceanic Ross Sea during late summer. Antarctic Science 26: 345–360.
Garrard, T. A., 1969. Amendments to Iredale and McMichael’s “Reference list of the marine Mollusca of New South Wales”, 1962. Journal of the Malacological Society of Australia 1: 3–11.
Gofas, S., 2015. Capulidae Fleming, 1822. Accessed through World Register of Marine Species at http://www.marinespecies.org/aphia.php?p=taxdetails&id=139 on 2015-4-05.
Graham, A., 1988. Molluscs: Prosobranchs and Pyramidellid Gastropods: Keys and Notes for the Identification of the Species, Vol. 2. Brill Archive, London.
Habe, T. & T. Igarashi, 1967. A list of marine molluscan shells in the Fisheries Museum, Faculty of Fisheries, Hokkaido University (Kawasaki collection and specimens collected by the Marine Zoological Laboratory). Bulletin of the Faculty of Fisheries Hokkaido University 6: 1–56.
Hain, S. & P. M. Arnaud, 1992. Notes on the reproduction of high-Antarctic molluscs from the Weddell Sea. Polar Biology 12: 303–312.
Hayashi, S., 2003. The molecular phylogeny of the Buccinidae (Caenogastropoda: Neogastropoda) as inferred from the complete mitochondrial 16S rRNA gene sequences of selected representatives. Molluscan Research 25: 85–98.
Heimeier, D., S. Lavery & M. A. Sewell, 2010. Using DNA barcoding and phylogenetics to identify Antarctic invertebrate larvae: lessons from a large scale study. Marine Genomics 3: 165–177.
Huelsenbeck, J. P. & F. Ronquist, 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics Application Note 17: 754–755.
Iyengar, E. V., 2002. Sneaky snails and wasted worms: kleptoparasitism by Trichotropis cancellata (Mollusca, Gastropoda) on Serpula columbiana (Annelida, Polychaeta). Marine Ecology Progress Series 244: 153–162.
Iyengar, E. V., 2004. Host-specific performance and host use in the kleptoparasitic marine snail Trichotropis cancellata. Oecologia 138: 628–639.
Iyengar, E. V., 2005. Seasonal feeding-mode changes in the marine facultative kleptoparasite Trichotropis cancellata (Gastropoda, Capulidae): trade-offs between trophic strategy and reproduction. Canadian Journal of Zoology 83: 1097–1111.
Iyengar, E. V., 2008. Kleptoparasitic interactions throughout the animal kingdom and a re-evaluation, based on participant mobility, of the conditions promoting the evolution of kleptoparasitism. Biological Journal of the Linnean Society 93: 745–762.
Jensen, J. L., A. J. Bohonak & S. T. Kelley, 2005. Isolation by distance, web service. BMC Genetics 6: 13.
Jones, N. S., 1949. Biological note on Capulus ungaricus. Annual Report of the Liverpool Marine Biology Committee and their Port Erin (isle of Man) [1949]: 29–30.
Katoh, K. & H. Toh, 2008. Recent developments in the MAFFT multiple sequence alignment program. Briefings in Bioinformatics 9: 286–298.
Katoh, K., K. Misawa, K. Kuma & T. Miyata, 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30: 3059–3066.
Knowlton, N., 2000. Molecular genetic analyses of species boundaries in the sea. Hydrobiologia 420: 73–90.
Kosuge, S. & S. Hayashi, 1967. Notes on the feeding habits of Capulus dilatatus. Scientific Reports of the Yokosuka City Museum 13: 45–54.
Layton, K. K., A. L. Martel & P. D. Hebert, 2014. Patterns of DNA barcode variation in Canadian marine molluscs. PLoS ONE 9: E95003.
Lebour, M. V., 1937. The eggs and larvae of British prosobranchs with special reference to those living in the plankton. Journal of the Marine Biological Association of the United Kingdom 22: 105–166.
Levin, L. A., 2006. Recent progress in understanding larval dispersal: new directions and digressions. Integrative and Comparative Biology 46: 282–297.
Librado, P. & J. Rozas, 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452.
Malaquias, M. A. E. & D. G. Reid, 2009. Tethyan vicariance, relictualism and speciation: evidence from a global molecular phylogeny of the opisthobranch genus Bulla. Journal of Biogeography 36: 1760–1777.
Mantel, N., 1967. The detection of disease clustering and a generalized regression approach. Cancer Research 27: 209–220.
Matsukuma, A., 2003. 77 Additional Marine Bivalve Species from Wakayama Prefecture. A supplement to “A Catalogue of Molluscs of Wakayama Prefecture, the Province of KII-I”, by T. Habe. Publications of the Seto Marine Biological Laboratory, Special Publication Series 7: 9–32.
Miller, M. A., W. Pfeiffer & T. Schwartz, 2010. Creating the CIPRES science gateway for inference of large phylogenetic trees. Gateway Computing Environments Workshop (GCE) 2010: 1–8.
Nation, J. L., 1983. A new method using hexamethyldisilazane for preparation of soft insect tissues s for scanning electron microscopy. Stain Technology 58: 347–351.
Numanami, H., 1996. Taxonomic study on Antarctic gastropods collected by Japanese Antarctic Research Expeditions. Memoirs of the National Institute of Polar Research Ser. E Biology and Medical Science 39: 1–244.
Nuñez, J. J., A. Vejar-Pardo, B. E. Guzman, E. H. Barriga & C. S. Gallardo, 2012. Phylogenetic and mixed Yule-coalescent analyses reveal cryptic lineages within two South American marine snails of the genus Crepipatella (Gastropoda: Calyptraeidae). Invertebrate Biology 131: 301–311.
Oliverio, M., 1996a. Life-histories, speciation and biodiversity in Mediterranean prosobranchs gastropods. Vie et Mileu 46: 163–169.
Oliverio, M., 1996b. Contrasting developmental strategies and speciation in N.E. Atlantic prosobranchs: a preliminary analysis. In Taylor, J. D. (ed.), Origin and Evolutionary Radiation of the Mollusca, Vol. 22. Oxford University Press, Oxford: 261–266.
Oliverio, M., 1997. Global biodiversity and life-history evolution in prosobranchs gastropods. Iberus 16: 73–79.
Oliverio, M. & P. Mariottini, 2001. A molecular framework for the phylogeny of Coralliophila and related muricoids. Journal of Molluscan Studies 67: 215–224.
Orr, V., 1962. The drilling habit of Capulus danieli (Crosse) (Mollusca: Gastropoda). The Veliger 5: 63–67.
Orton, J. H., 1949. Notes on the feeding habit of Capulus ungaricus. Report of the Marine Biological Station, Pt Erin 61: 29–30.
Padial, J. M., A. Miralles, I. De la Riva & M. Vences, 2010. The integrative future of taxonomy. Frontiers in Zoology 7: 16.
Palumbi, S. R., 1996. Nucleic acids II: the polymerase chain reaction. Molecular Systematics 2: 205–247.
Palumbi, S. R., F. Cipriano & M. P. Hare, 2001. Predicting nuclear gene coalescence from mitochondrial data: the three-times rule. Evolution 55: 859–868.
Pante, E., N. Puillandre, A. Viricel, S. Arnaud-Haond, D. Aurelle, M. Castelin, A. Chenuil, C. Destombe, D. Forcioli, M. Valero, F. Viard & S. Samadi, 2015. Species are hypotheses: avoid connectivity assessments based on pillars of sand. Molecular Ecology 24: 525–544.
Parries, S. C. & L. R. Page, 2003. Larval development and metamorphic transformation of the feeding system in the kleptoparasitic snail Trichotropis cancellata (Mollusca, Caenogastropoda). Canadian Journal of Zoology 81: 1650–1661.
Pearse, J. S. & S. J. Lockhart, 2004. Reproduction in cold water: paradigm changes in the 20th century and a role for cidaroid sea urchins. Deep Sea Research Part II: Topical Studies in Oceanography 51: 1533–1549.
Peck, L. S., A. Clarke & A. L. Chapman, 2006. Metabolism and development of pelagic larvae of Antarctic gastropods with mixed reproductive strategies. Marine Ecology Progress Series 318: 213–220.
Pelseneer, P., 1903. Mollusques (Amphineures, Gastropodes et Lamellibranches). Resultats du Voyage du S.Y. Belgica en 1897–1898–1899. Rapports Scientifiques, Zoologie
Picken, G. B., 1980. Reproductive adaptations of Antarctic benthic invertebrates. Biological Journal of the Linnean Society 14: 67–75.
Pilkinton, M. C., 1974. The eggs and hatching stages of some New Zealand prosobranch molluscs. Journal of the Royal Society of New Zealand 4: 411–431.
Ponder, W. F. & D. R. Lindberg, 2008. Phylogeny and Evolution of the Mollusca. University of California Press, Berkeley.
Ponder, W. F. & A. Warén, 1988. Classification of the Caenogastropoda and Heterostropha – a list of the family-group and higher category names. Malacological Review 4: 288–326.
Posada, D., 2008. jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 1253–1256.
Poulin, E. & J.-P. Féral, 1996. Why there are so many species of brooding Antarctic echinoids? Evolution 50: 820–830.
Poulin, E., A. T. Palma & J.-P. Féral, 2002. Evolutionary versus ecological success in Antarctic benthic invertebrates. Trends in Ecology & Evolution 17: 218–222.
Puillandre, N., A. Lambert, S. Brouillet & G. Achaz, 2012a. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 21: 1864–1877.
Puillandre, N., M. V. Modica, Y. Zhang, L. Sirovich, M. C. Boisselier, C. Cruaud, M. Holford & S. Samadi, 2012b. b. Large-scale species delimitation method for hyperdiverse groups. Molecular Ecology 21: 2671–2691.
Rambaut, A., M. A. Suchard, D. Xie & A. J. Drummond, 2014. Tracer v1.6. http://beast.bio.ed.ac.uk/Tracer.
Reid, D. G., K. Lal, J. Mackenzie-Dodds, F. Kaligis, D. T. J. Littlewood, et al., 2006. Comparative phylogeography and species boundaries in Echinolittorina snails in the central Indo-West Pacific. Journal of Biogeography 33: 990–1006.
Savazzi, E., 1990. Biological aspects of theoretical shell morphology. Lethaia 23: 195–212.
Schiaparelli, S., 2014. Biotic interactions. In De Broyer, C., P. Koubbi, H. J. Griffiths, B. Raymond, C. d’Udekem d’Acoz, A. Van de Putte, B. Danis, B. David, S. Grant, J. Gutt, C. Held, G. Hosie, F. Huettmann, A. Post & Y. Ropert-Coudert (eds), Biogeographic Atlas of the Southern Ocean. Scientific Committee on Antarctic Research. Scott Polar Research Institute, Cambridge: 245–252.
Schiaparelli, S., R. Cattaneo-Vietti & M. Chiantore, 2000. Adaptive morphology of Capulus subcompressus Pelseneer, 1903 (Gastropoda: Capulidae) from Terra Nova Bay, Ross Sea (Antarctica). Polar Biology 23: 11–16.
Selkoe, K. A. & R. J. Toonen, 2011. Marine connectivity: a new look at pelagic larval duration and genetic metrics of dispersal. Marine Ecology Progress Series 436: 291–305.
Sewell, M. A., 2005. Examination of the meroplankton community in the south-western Ross Sea, Antarctica, using a collapsible plankton net. Polar Biology 28: 119–131.
Sharman, M., 1956. Note on Capulus ungaricus (L.). Journal of the Marine Biological Association of the UK 35: 445–450.
Stanwell-Smith, D., A. Hood & L. S. Peck, 1997. A Field Guide to the Pelagic Invertebrate Larvae of the Maritime Antarctic. British Antarctic Survey, Cambridge.
Swofford, D. L., 2002. PAUP* beta version: Phylogenetic Analysis Using Parsimony (*and Other Methods). Sinauer Associated, Sunderland, MA.
Takano, T. & Y. Kano, 2014. Molecular phylogenetic investigations of the relationships of the echinoderm-parasite family Eulimidae within Hypsogastropoda (Mollusca). Molecular Phylogenetics and Evolution 79: 258–269.
Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei & S. Kumar, 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28: 2731–2739.
Tanzler, R., K. Sagata, S. Surbakti, M. Balke & A. Riedel, 2012. DNA barcoding for community ecology – how to tackle a hyperdiverse. Mostly undescribed Melanesian Fauna. PLoS One 7(1): e28832.
ten Hove, H. A., 1994. The dualistic relation between molluscs and serpulid tube-worms. In Coomans-Eustatia, M., R. Moolenbeek, W. Los & P. Prins (eds), De horen en zijn echo. Stichting Libri Antilliani. Zoölogisch Museum, Amsterdam: 65–70.
Thatje, S., 2012. Effects of capability for dispersal on the evolution of diversity in Antarctic Benthos. Integrative and Comparative Biology 52: 470–482.
Thorson, G., 1935. Studies on the egg-capsules and development of Arctic marine prosobranchs. Meddelelser om Grønland 100: 1–71.
Thorson, G., 1965. A neotenous dwarf-form of Capulus ungaricus (L.) (Gastropoda, Prosobranchia) commensalistic on Turritella communis Risso. Ophelia 2: 175–210.
Warén, A. & P. Bouchet, 1991. Systematic position and revision of Haloceras Dall, 1889 (Caenogastropoda, Haloceratidae fam. nov.). Résultats des Campagnes Musorstom 7: 111–161.
Warén, A., P. M. Arnaud & J. R. Cantera, 1986. Description of two new gastropods of the Trichotropidae from Kerguelen and Crozet Islands (south Indian Ocean). The Veliger 29: 157–165.
Wheeler, Q. & R. Meier, 2000. Species Concepts and Phylogenetic Theory: A Debate. Columbia University Press, New York.
Yonge, C. M., 1938. Evolution of ciliary feeding in the Prosobranchia, with an account of feeding in Capulus ungaricus. Journal of the Marine Biological Association of the UK 22: 453–468.
Yonge, C. M., 1962. On the biology of the mesogastropod Trichotropis cancellata Hinds, a benthic indicator species. Biological Bulletin, Biological Laboratory Woods Hole 122: 160–181.
Acknowledgements
We thank the PNRA for funding and logistic support during the Italian expedition XXVII and XXVIII (PNRA Project 2010/A1.10 “BAMBi” Barcoding of Antarctic Marine Biodiversity). Marine research activities during the TAN0402 “BioRoss” expedition have been jointly supported by Antarctica New Zealand, New Zealand Ministry of Primary Industries (MPI) and the National Institute of Water and Atmospheric research (NIWA). We thank the Alfred Wegener Institute (AWI) for funding and logistic support of the Polarstern cruise PS81, ANT XXIX/3. We are indebted to Claudio Ghiglione for the preparation of the map and to Walter Renda for help with collecting Capulus. We wish to thank Anders Warén and an anonymous reviewer for very constructive criticism of this manuscript. This is BAMBi contribution #9 and part of the integrated output from the SCAR-AntEco Science Programme.
Author information
Authors and Affiliations
Corresponding author
Additional information
Guest editors: Diego Fontaneto & Stefano Schiaparelli / Biology of the Ross Sea and Surrounding Areas in Antarctica
Rights and permissions
About this article
Cite this article
Fassio, G., Modica, M.V., Alvaro, M.C. et al. Developmental trade-offs in Southern Ocean mollusc kleptoparasitic species. Hydrobiologia 761, 121–141 (2015). https://doi.org/10.1007/s10750-015-2318-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10750-015-2318-x


