Skip to main content

Repetitive baselines of phytoplankton succession in an unstably stratified temperate lake (Lake Erken, Sweden): a long-term analysis

Abstract

The seasonal development of phytoplankton is a sequence of consecutive events with waxes and wanes of biomass and compositional shifts. This study analyzed 16 years data in Lake Erken, Sweden and revealed four baselines of phytoplankton succession with their underlying drivers. Results showed that there were two diatom-dominated phases annually. The vernal community was dominated by centric diatoms larger than 15 µm (functional groups B and C) which were fast-growing diatoms being highly efficient in the use of nutrients. The autumn community was comprised mainly meroplanktonic mixing-dependent Aulacoseira granulata and Fragilaria sp. (MP and P) or/and large centric diatoms (B). Between the two mixing-phases with diatoms, a Gloeotrichia echinulata (H 2) bloom occurred due to its preference for a stratified water column with elevated water temperatures and high light availability. The summer stratification in Lake Erken was weak and short, thus, favoring meroplanktonic diatoms to peak once the lake turned over in early autumn. Lake Erken represents an intermediate case between a highly mixed polymictic lake and a lake with strong summer stratification, where the observed stratification patterns allowed the development of an autumn diatom phase similar, by extent, to the vernal one and mainly dominated by meroplanktonic diatoms.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Abera, F. D. & M. Schagerl, 2015. The phytoplankton community of tropical high- mountain crater lake Wonchi, Ethiopia. Hydrobiologia. doi:10.1007/s10750-015-2233-1.

    Google Scholar 

  2. Abonyi, A., M. Leitão, A. M. Lançon & J. Padisák, 2012. Phytoplankton functional groups as indicators of human impacts along the River Loire (France). Hydrobiologia 698: 233–249.

    Article  Google Scholar 

  3. Abonyi, A., M. Leitão, I. Stanković, G. Borics, G. Várbíró & J. Padisák, 2014. A large river (River Loire, France) survey to compare phytoplankton functional approaches: do they display river zones in similar ways? Ecological Indicators 46: 11–22.

    Article  Google Scholar 

  4. Adrian, R., N. Walz, T. Hintze, S. Hoeg & R. Rusche, 1999. Effects of ice duration on plankton succession during spring in a shallow polymictic lake. Freshwater Biology 41: 621–632.

    Article  Google Scholar 

  5. Ambrosetti, W. & L. Barbanti, 2002. Physical limnology of Italian lake. 2. Relationships between morphometric parameters, stability and Birgean work. Journal of Limnology 61: 159–167.

    Article  Google Scholar 

  6. Anderson, M. J., 2001. Permutation tests for univariate or multivariate analysis of variance and regression. Canadian Journal of Fisheries and Aquatic Science 58: 626–639.

    Article  Google Scholar 

  7. Boström, B. & K. Pettersson, 1977. The spring development of phytoplankton in Lake Erken. Freshwater Biology 7: 327–335.

    Article  Google Scholar 

  8. Braidech, T., P. Gehring & C. Kleveno, 1972. Biological processes related to oxygen depletion and nutrient regeneration processes in Lake Erie central basin. In Burns, N. M. & C. Ross (eds), Project HYPO – An Intenstive Study of the Lake Erie Central Basin Hypolimnion and Related Surface Water Phenomena. CCIW Paper No. 6. U.S. EPA Report No. TS-04-71-208-24.

  9. Breiman, L., J. H. Friedman, R. A. Olshen & C. J. Stone, 1984. Classification and Regression Trees. Belmont Wadsworth, Belmont.

    Google Scholar 

  10. Carey, C. C., H. A. Ewing, K. L. Cottingham, K. C. Weathers, R. Q. Thomas & J. F. Haney, 2012. Occurrence and toxicity of the cyanobacterium Gloeotrichia echinulata in low-nutrient lakes in the northeastern United States. Aquatic Ecology 46: 395–409.

    CAS  Article  Google Scholar 

  11. Carrick, H. J., F. J. Aldridge & C. L. Schelske, 1993. Wind influences phytoplankton biomass and composition in a shallow, productive lake. Limnology and Oceanography 38: 1179–1192.

    Article  Google Scholar 

  12. Carrick, H. J., J. B. Moon & B. F. Gaylord, 2005. Phytoplankton dynamics and hypoxia in Lake Erie: a hypothesis concerning benthic-pelagic coupling in the Central Basin. Journal of Great Lakes Research 31: 111–124.

    CAS  Article  Google Scholar 

  13. Clarke, K. R., 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117–143.

    Article  Google Scholar 

  14. Connell, J. H., 1978. Diversity of tropical rain forests and coral reefs. Science 199: 1302–1310.

    CAS  Article  PubMed  Google Scholar 

  15. Conway, H. L., J. I. Parker, E. M. Yaguchi & D. L. Mellinger, 1977. Biological utilization and regeneration of silicon in Lake Michigan. Journal of the Fisheries Board of Canada 34: 537–544.

    CAS  Article  Google Scholar 

  16. De Senerpont Domis, L. N., J. J. Elser, A. S. Gsell, V. L. M. Huszar, B. W. Ibelings, E. Jeppesen, S. Kosten, W. M. Mooij, F. Roland, U. Sommer, E. Van Donk, M. Winder & M. Lürling, 2013. Plankton dynamics under different climatic conditions in space and time. Freshwater Biology 58: 463–482.

    Article  Google Scholar 

  17. De’Ath, G. & K. E. Fabricius, 2000. Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81: 3178–3192.

    Article  Google Scholar 

  18. Dokulil, M. T. & J. Padisák, 1994. Long-term compositional response of phytoplankton in a shallow, turbid environment, Neusiedlersee (Austria/Hungary). Hydrobiologia 275(276): 125–137.

    Article  Google Scholar 

  19. Engelhardt, C. & G. Kirillin, 2014. Criteria for the onset and breakup of summer lake stratification based on routine temperature measurements. Fundamental and Applied Limnology/Archiv für Hydrobiologie 184: 183–194.

    Article  Google Scholar 

  20. Forsell, L. & K. Pettersson, 1995. On the seasonal migration of the cyanobacterium Gloeotrichia echinulata in Lake Erken, Sweden, and its influence on the pelagic population. Marine & Freshwater Research 46: 287–293.

    Google Scholar 

  21. Gaedke, U. & A. Schweizer, 1993. The first decade of oligotrophication in Lake Constance 1. The response of phytoplankton biomass and cell size. Oecologia 93: 268–275.

    Article  Google Scholar 

  22. Grobbelaar, J. U., C. J. Soeder & E. Stengel, 1990. Modeling algal productivity in large outdoor cultures and waste treatment systems. Biomass 21: 297–314.

    Article  Google Scholar 

  23. Hajnal, É. & J. Padisák, 2008. Analysis of long-term ecological status of Lake Balaton based on the ALMOBAL phytoplankton database. Hydrobiologia 599: 227–237.

    Article  Google Scholar 

  24. Huisman, J., J. Sharplers, J. M. Stroom, P. M. Visser, W. E. A. Kardinaal, J. M. Verspagen & B. Sommeijer, 2004. Changes in turbulent mixing shift competition for light between phytoplankton species. Ecology 85: 2960–2970.

    Article  Google Scholar 

  25. Hutchinson, G., 1961. The paradox of the plankton. American Naturalist 95: 137–145.

    Article  Google Scholar 

  26. Hyenstrand, P., E. Rydin, M. Gunnerhed, J. Linder & P. Blomqvist, 2001. Response of the cyanobacterium Gloeotrichia echinulata to iron and boron additions – an experiment from Lake Erken. Freshwater Biology 46: 735–741.

    CAS  Article  Google Scholar 

  27. Idso, S. B., 1973. On the concept of lake stability. Limnology and Oceanography 18: 681–683.

    Article  Google Scholar 

  28. Istvánovics, V., K. Pettersson, D. Pierson & R. Bell, 1992. Evaluation of phosphorus deficiency indicators for summer phytoplankton in Lake Erken. Limnology and Oceanography 37: 890–900.

    Article  Google Scholar 

  29. Istvánovics, V., K. Pettersson, M. A. Rodrigo, D. Pierson, J. Padisák & W. Colom, 1993. Gloeotrichia echinulata, a conlonial cyanobacterium with a unique phosphorus uptake and life strategy. Journal of Plankton Research 15: 531–552.

    Article  Google Scholar 

  30. Istvánovics, V., J. Padisák, K. Pettersson & D. C. Pierson, 1994. Growth and phosphorus uptake of summer phytoplankton in Lake Erken, Sweden. Journal of Plankton Research 16: 1167–1196.

    Article  Google Scholar 

  31. Jensen, J. P., E. Jeppesen, K. Olrik & P. Kristensen, 1994. Impact of nutrients and physical factors on the shift from cyanobacterial to chlorophyte dominance in shallow Danish lakes. Canadian Journal of Fisheries and Aquatic Sciences 51: 1692–1699.

    Article  Google Scholar 

  32. Karlsson, I., 2003. Benthic growth of Gloeotrichia echinulata Cyanobacteria. Hydrobiolgia 506–509: 189–193.

    Article  Google Scholar 

  33. Karlsson-Elfgren, I., E. Rydin, P. Hyenstrand & K. Pettersson, 2003. Recruitment and pelagic growth of Gloeotrichia echinulata (Cyanophyceae) in Lake Erken. Journal of Phycology 39: 1050–1056.

    Article  Google Scholar 

  34. Karlsson-Elfgren, I., K. Rengefors & S. Gustafsson, 2004. Factors regulating recruitment from the sediment to the water column in the bloom-forming cyanobacterium Gloeotrichia echinulata. Freshwater Biology 49: 265–273.

    Article  Google Scholar 

  35. Karlsson-Elfgren, I., P. Hyenstrand & E. Rydin, 2005. Pelagic growth and colony division of Gloeotrichia echinulata in Lake Erken. Journal of Plankton Research 27: 145–151.

    Article  Google Scholar 

  36. Lashaway, A. R., 2009. Spatial and temporal variation of diatom physiological condition in Lake Erie benthos: implications for seasonal hypoxia. MSc Thesis, https://etda.libraries.psu.edu/paper/9558/4375 (viewed on 14 March, 2015).

  37. Lashaway, A. R. & H. J. Carrick, 2010. Effects of light, temperature and habitat quality on meroplanktonic diatom rejuvenation in Lake Erie: implications for seasonal hypoxia. Journal of Plankton Research 32: 479–490.

    CAS  Article  Google Scholar 

  38. Levasseur, M., J. C. Therriault & L. Legendre, 1984. Hierarchical control of phytoplankton succession by physical factors. Marine Ecology Progress Series 19: 211–222.

    Article  Google Scholar 

  39. Liukkonen, M., T. Kairesalo & J. Keto, 1993. Eutrophication and recovery of Lake Vesijärvi (south Finland): diatom frustules in varved sediments over a 30-year period. Hydrobiologia 269–270: 415–426.

    Article  Google Scholar 

  40. Lund, J. W. G., 1954. The seasonal cycle of the plankton diatom, Melosira italica (Ehr.) Kütz. subsp. subarctica O. Müll. Journal of Ecology 42: 151–179.

    Article  Google Scholar 

  41. Lund, J. W. G., C. Kipling & E. D. Le Cren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170.

    Article  Google Scholar 

  42. Marshall, C. T. & R. H. Peters, 1989. General patterns in the seasonal developlment of chlorophyll a for temperate lakes. Limnology and Oceanography 34: 856–867.

    CAS  Article  Google Scholar 

  43. McCutcheon, S. C., L. L. Martin & T. O. Barnwell, 1993. Water quality. In Maidment, D. R. (ed.), Handbook of Hydrology. McGraw-Hill Inc, New York.

    Google Scholar 

  44. McQuoid, M. R., 2002. Pelagic and benthic environmental controls on the spatial distribution of a viable diatom propagule bank on the Swedish west coast. Journal of Phycology 38: 881–893.

    Article  Google Scholar 

  45. McQuoid, M. R. & A. Godhe, 2004. Recruitment of coastal planktonic diatoms from benthic versus pelagic cells: variations in bloom development and species composition. Limnology and Oceanography 49: 1123–1133.

    Article  Google Scholar 

  46. Menzel, D. W. & N. Corwin, 1965. The measurement of total phosphorus in seawater based on the liberation of organically bound fractions by persulfate oxidation. Limnology and Oceanography 10: 280–282.

    Article  Google Scholar 

  47. Millie, D. F., G. L. Fahnenstiel, S. E. Lohrenz, H. J. Carrick, T. H. Johengen & O. M. E. Schofield, 2003. Physical-biological coupling in southern Lake Michigan: influence of episodic sediment resuspension on phytoplankton. Aquatic Ecology 37: 393–408.

    CAS  Article  Google Scholar 

  48. Mullin, J. B. & J. P. Riley, 1955. The colorimetric determination of silicate with special reference to sea and natural waters. Analytical Chimica Acta 12: 162–176.

    CAS  Article  Google Scholar 

  49. Murphy, J. & J. P. Riley, 1962. A modified single solution method for the determination of phosphate in natural waters. Analytical Chimica Acta 27: 31–36.

    CAS  Article  Google Scholar 

  50. Naselli-Flores, L. & R. Barone, 2007. Pluriannual morphological variability of phytoplankton in a highly productive Mediterranean reservoir (Lake Arancio, Southwestern Sicily). Hydrobiologia 578: 87–95.

    Article  Google Scholar 

  51. Nauwerck, A., 1963. Die Beziehungen zwischen Zooplankton und Phytoplankton in See Erken. Symbolae Botanicae Upsaliensis 17: 1–163.

    Google Scholar 

  52. Nõges, P., U. Mischke, R. Laugaste & A. G. Solimini, 2010. Analysis of changes over 44 years in the phytoplankton of Lake Võrtsjärv (Estonia): the effect of nutrients, climate and the investigator on phytoplankton-based water quality indices. Hydrobiologia 646: 33–48.

    Article  Google Scholar 

  53. Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H. Wagner, 2013. Package “vegan.” R package ver. 2.0-8, 254.

  54. Padisák, J., 1980. Short-term studies on the phytoplankton of Lake Balaton in the summers of 1976, 1977 and 1978. Acta Botanica Hungarica 26: 397–416.

    Google Scholar 

  55. Padisák, J., 1994. Identification of relevant time-scales in non-equilibrium community dynamics: conclusions from phytoplankton surveys. New Zealand Journal of Ecology 18: 169–176.

    Google Scholar 

  56. Padisák, J., 1998. Sudden and gradual responses of phytoplankton to global climate change: case studies from two large, shallow lakes (Balaton, Hungary and the Neusiedlersee Austria/Hungary). In George, D. G., J. G. Jones, P. Puncochar, C. S. Reynolds & D. M. Sutcliffe (eds), Management of Lakes and Reservoirs During Global Change. Kluwer, Dordrecht: 111–125.

    Chapter  Google Scholar 

  57. Padisák, J. & M. Dokulil, 1994. Meroplankton dynamics in a saline, turbulent, turbid shallow lake (Neusiedlersee, Austria and Hungary). Hydrobiologia 289: 23–42.

    Article  Google Scholar 

  58. Padisák, J., L. G.-Tóth & M. Rajczy, 1990. Stir-up effect of wind on a more-or-less stratified shallow lake phytoplankton community, Lake Balaton, Hungary. Hydrobiologia 191: 249–254.

    Article  Google Scholar 

  59. Padisák, J., J. Kohler & S. Hoeg, 1999. The effect of changing flusing rates on development of late summer Aphanizomenon and Microcystis populations in a shallow lake, Müggelsee, Berlin, Germany. In Tundisi, J. G. & M. Straskraba (eds), Theoretical Reservoir Ecology and Its Applications. International Institute of Ecology, Brazilian Academy of Sciences and Backhuys Publishers, Leiden: 411–423.

    Google Scholar 

  60. Padisák, J., F. Barbosa, R. Koschel & L. Krienitz, 2003a. Deep layer cyanoprokaryota maxima in temperate and tropical lakes. Archiv für Hydrobiologie Special Issues Advances in Limnology 58: 175–199.

    Google Scholar 

  61. Padisák, J., W. Scheffler, P. Kasprzak, R. Koschel & L. Krienitz, 2003b. Interannual changes (1994–2000) of phytoplankton of Lake Stechlin. Archiv für Hydrobiologie Special Issues Advances in Limnology 58: 101–133.

    Google Scholar 

  62. Padisák, J., W. Scheffler, C. Sípos, P. Kasprzak, R. Koschel & L. Krienitz, 2003c. Spatial and temporal pattern of development and decline of the spring diatom populations in Lake Stechlin in 1999. Archiv für Hydrobiologie Special Issues Advances in Limnology 58: 135–155.

    Google Scholar 

  63. Padisák, J., L. O. Crossetti & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19.

    Article  Google Scholar 

  64. Padisák, J., É. Hajnal, L. Krienitz, J. Lakner & V. Üveges, 2010. Rarity, ecological memory, rate of floral change in phytoplankton – and the mystery of the Red Cock. Hydrobiologia 653: 45–64.

    Article  Google Scholar 

  65. Pechlaner, R., 1970. The phytoplankton spring outburst and its conditions in Lake Erken (Sweden) 1. Limnology and Oceanography 15: 113–130.

    Google Scholar 

  66. Peeters, F., D. Straile, A. Lorke & D. Ollinger, 2007. Turbulent mixing and phytoplankton spring bloom development in a deep lake. Limnology and Oceanography 52: 286–298.

    Article  Google Scholar 

  67. Peeters, F., O. Kerimoglu & D. Straile, 2013. Implications of seasonal mixing for phytoplankton production and bloom development. Theoretical Ecology 6: 115–129.

    Article  Google Scholar 

  68. Pettersson, K., 1980. Alkaline phosphatase activity and algal surplus phosphorus as phosphorus-deficiency indicators in Lake Erken. Archiv fur Hydrobiologie 89: 54–87.

    CAS  Google Scholar 

  69. Pettersson, K., 1985. The availability of phosphorus and the species composition of the spring phytoplankton in Lake Erken. Internationale Revue der gesamten Hydrobiologie und Hydrographie 70: 527–546.

    CAS  Article  Google Scholar 

  70. Pettersson, K., 1990. The spring development of phytoplankton in Lake Erken: species composition, biomass, primary production and nutrient conditions – a review. Hydrobiologia 191: 9–14.

    CAS  Article  Google Scholar 

  71. Pettersson, K., L. Forsell & A. T. Hasselrot, 1995. Horizontal distribution patterns during a cyanobacterial bloom. Water Science and Technology 32: 139–142.

    Article  Google Scholar 

  72. Ptacnik, R., S. Diehl & S. Berger, 2003. Performance of sinking and nonsinking phytoplankton taxa in a gradient of mixing depths. Limnology and Oceanography 48: 1903–1912.

    Article  Google Scholar 

  73. Quigg, A. & J. Beardall, 2003. Protein turnover in relation to maintenance metabolism at low photon flux in two marine microalgae. Plant, Cell and Environment 26: 693–703.

    CAS  Article  Google Scholar 

  74. Read, J. S., D. P. Hamilton, I. D. Jones, K. Muraoka, L. A. Winslow, R. Kroiss, C. H. Wu & E. Gaiser, 2011. Derivation of lake mixing and stratification indices from high-resolution lake buoy data. Environmental Modelling & Software Elsevier Ltd 26: 1325–1336.

    Article  Google Scholar 

  75. Rengefors, K., 1998. Seasonal succession of dinoflagellates coupled to the benthic cyst dynamics in Lake Erekn. Archiv für Hydrobiologie Special Issues Advances in Limnology 51: 123–141.

    Google Scholar 

  76. Reynolds, C. S., 1993. Scales of disturbance and their role in plankton ecology. Hydrobiologia 249: 157–171.

    Article  Google Scholar 

  77. Reynolds, C. S., 2000. Hydroecology of rive plankton: the role of variability in channel flow. Hydrological Processes 14: 3119–3132.

    Article  Google Scholar 

  78. Reynolds, C. S., J. Padisák & U. Sommer, 1993. Intermediate disturbance in the ecology of phytoplankton and the maintenance of species diversity: a synthesis. Hydrobiologia 249: 183–188.

    Article  Google Scholar 

  79. Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.

    Article  Google Scholar 

  80. Richardson, A. J. & D. S. Schoeman, 2004. Climate impact on plankton ecosystems in the Northeast Atlantic. Science (New York, NY) 305: 1609–1612.

    CAS  Article  Google Scholar 

  81. Roelke, D., Y. Buyukates, M. Williams & J. Jean, 2004. Interannual variability in the seasonal plankton succession of a shallow, warm-water lake. Hydrobiologia 513: 205–218.

    Article  Google Scholar 

  82. SAS Institute Inc, 2014. Using JMP@ 11, 2nd ed. SAS Institute Inc, Cary, NC.

    Google Scholar 

  83. Schelske, C. L., H. J. Carrick & F. J. Aldridge, 1995. Can wind-induced resuspension of meroplankton affect phytoplankton dynamics? Journal of the North American Benthological Society 14: 616–630.

    Article  Google Scholar 

  84. Smetacek, V. S., 1985. Role of sinking in diatom life-history cycles: ecological, evolutionary and ecological significance. Marine Biology 84: 239–251.

    Article  Google Scholar 

  85. Sommer, U., 1986. The periodicity of phytoplankton in Lake Constance (Bodensee) in comparison to other deep lakes of central Europe. Hydrobiologia 138: 1–7.

    Article  Google Scholar 

  86. Sommer, U. & A. Lewandowska, 2011. Climate change and the phytoplankton spring bloom: warming and overwintering zooplankton have similar effects on phytoplankton. Global Change Biology 17: 154–162.

    Article  Google Scholar 

  87. Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv für Hydrobiologie 106: 433–471.

    Google Scholar 

  88. Sommer, U., A. Adrian, L. De Senerpont Domis, J. J. Elser, U. Gaedke, B. Ibelings, E. Jeppesen, M. Lürling, J. C. Molinero, W. M. Mooij, E. Van Donk & M. Winder, 2012. Beyond the Plankton Ecology Group (PEG) Model: mechanisms driving plankton succession. Annual Review of Ecology Evolution and Systematics 43: 429–448.

    Article  Google Scholar 

  89. Souza, M. B. G., C. F. A. Barros, F. Barbosa, É. Hajnal & J. Padisák, 2008. Role of atelomixis in replacement of phytoplankton assemblages in Dom Helvécio Lake, South-East Brazil. Hydrobiologia 607: 211–224.

    CAS  Article  Google Scholar 

  90. Stoermer, E. F., R. G. Kreis & L. Sicko-Goad, 1981. A systematic, quantitative, and ecological comparison of Melosira islandica O. Müll. with M. granulata (Ehr.) Ralfs from the Laurentian Great Lakes. Journal of Great Lakes Research 7: 345–356.

    Article  Google Scholar 

  91. Tapolczai, K. O., J. Anneville, N. Padisák, T. Zohary. Salmaso & F. Rimet, 2014. Occurrence and mass development dynamics of Mougeotia spp. in large, deep lakes. Hydrobiologia 745: 17–29.

    Article  Google Scholar 

  92. Vanni, M. J. & J. Temte, 1990. Seasonal patterns of grazing and nutrient limitation of phytoplankton in a eutrophic lake. Limonology and Oceanography 35: 697–709.

    Article  Google Scholar 

  93. Wagner, C. & R. Adrian, 2011. Consequences of changes in thermal regime for plankton diversity and trait composition in a polymictic lake: a matter of temporal scale. Freshwater Biology 56: 1949–1961.

    Article  Google Scholar 

  94. Weyhenmeyer, G. A., T. Blenckner & K. Pettersson, 1999. Changes of the plankton spring outburst related to the North Atlantic Oscillation. Limnology and Oceanography 44: 1788–1792.

    Article  Google Scholar 

  95. Willén, T., 1962. Studies on the phytoplankton of some lakes connected with or recently isolated from the Baltic. Oikos 13: 169–199.

    Article  Google Scholar 

  96. Winder, M. & D. E. Schindler, 2004. Climatic effects on the phenology of lake processes. Global Change Biology 10: 1844–1856.

    Article  Google Scholar 

  97. Wood, E. D., F. A. Armstrong & F. A. Richards, 1967. Determination of nitrate in sea water by cadmium-copper reduction to nitrite. Journal of the Marine Biological Association of the United Kingdom 47: 23–31.

    CAS  Article  Google Scholar 

  98. Zohary, T., J. Padisák & L. Naselli-Flores, 2010. Phytoplankton in the physical environment: beyond nutrients, at the end, there is some light. Hydrobiologia 639: 261–269.

    CAS  Article  Google Scholar 

  99. Žutinić, P., M. Gligora-Udovič, K. Kralj-Borojević, A. Plenković-Moraj & J. Padisák, 2014. Morpho-functional classifications of phytoplankton assemblages of two deep karstic lakes. Hydrobiologia 740: 147–166.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the staff of the Erken Laboratory and Don Pierson for sampling and technical support and, for establishing the long-term database. We thank Anders Hasselrot for his support on data mining and statistics. We thank an anonymous reviewer for her/his very helpful criticism and comments on the earlier version of this paper; he/she has substantially improved our manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yang Yang.

Additional information

Guest editors: Luigi Naselli-Flores & Judit Padisák / Biogeography and Spatial Patterns of Biodiversity of Freshwater Phytoplankton

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Supplementary material 2 (DOCX 51 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Pettersson, K. & Padisák, J. Repetitive baselines of phytoplankton succession in an unstably stratified temperate lake (Lake Erken, Sweden): a long-term analysis. Hydrobiologia 764, 211–227 (2016). https://doi.org/10.1007/s10750-015-2314-1

Download citation

Keywords

  • Phytoplankton dynamics
  • Water column stability
  • Meroplanktonic diatom
  • Gloeotrichia echinulata
  • Decision trees