Skip to main content
Log in

Are diatoms a reliable and valuable bio-indicator to assess sub-tropical river ecosystem health?

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The use of diatoms as bio-indicators of water quality is common in temperate regions worldwide. However, less attention has been accorded to sub-tropical regions, particularly in Australia. This study assessed the value of diatom communities to infer water quality in a sub-tropical riverine system. Epilithic diatom and water samples were collected monthly from an east Australian river. Principal components analysis showed that the Lower Catchment sites were more strongly influenced by the measured environmental variables differentiating them from the Upper Catchment sites. Canonical Correspondence Analysis showed electrical conductivity and total phosphorus strongly influenced the diatom community distribution. The study revealed diatom species that are robust bio-indicators of water quality in this sub-tropical catchment. Cocconeis placentula, C. placentula var lineata, Gomphonema spec 2 and Tabellaria flocculosa were identified as indicators of moderate water quality. Bacillaria paradoxa, Navicula cryptocephala, Navicula mutica var mutica and Achnanthes fogedii were identified as indicators of poor water quality. This study identified that diatoms are effective indicators of water quality. Further research is required to develop a diatom biological index applicable to sub-tropical east Australian river systems to improve the effectiveness of environmental monitoring and sustainable river management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Almeida, S. F. P. & M. J. Feio, 2012. DIATMOD: diatom predictive model for quality assessment of Portuguese running waters. Hydrobiologia 695: 185–197.

    Article  CAS  Google Scholar 

  • Antón-Garrido, B., S. Romo & M. J. Villena, 2013. Diatom species composition and indices for determining the ecological status of coastal Mediterranean Spanish lakes. Paper presented at the Anales del Jardín Botánico de Madrid, pp 122–135.

  • ANZECC, 2000. Australian and New Zealand guidelines for fresh and marine water quality. The guidelines, Vol. 1. ANZECC, Canberra: 3.1-1–3.5-10.

    Google Scholar 

  • APHA, 2012. Standard methods for the examination of water and wastewater, 22nd ed. APHA, Washington, DC: 1–180.

    Google Scholar 

  • Aplin G, P. Beggs, G. Brierley, H. Cleugh, P. Curson, P. Mitchell et al., 1999. Water resource management: an inevitable global crisis? In: Global Environmental Crises: an Australian perspective, 2nd edn. Oxford University Press, Melbourne, pp 117–139.

  • Atazadeh, I., M. Sharifi & M. G. Kelly, 2007. Evaluation of the Trophic Diatom Index for assessing water quality in River Gharasou, western Iran. Hydrobiologia 589: 165–173.

    Article  CAS  Google Scholar 

  • Axelrod, J., 2011. Water crisis in the Murray–Darling Basin: Australia attempts to balance agricultural need with environmental reality. Sustain Dev Law Policy 12: 12–53.

    Google Scholar 

  • Bahls, L. L., E. Weber & J. Jarvie, 1985. Ecology and distribution of major diatom ecotypes in the southern Fort Union coal region of Montana. US Geological Survey 1289, 22nd ed. United States Government Printing Office, Washington, DC: 1–151.

    Google Scholar 

  • Battarbee, R. W., V. J. Jones, R. J. Flower, N. G. Cameron, H. Bennion, L. Carvalho, et al., 2001. 8. Diatoms. In Smol, J., H. Birks & W. Last (eds.), Tracking environmental change using lake sediments. Terrestrial, algal, and siliceous indicators, Vol. 3. Kluwer Academic Publishers, Dordrecht: 155–202.

    Chapter  Google Scholar 

  • Bellinger, B. J., C. Cocquyt & C. M. O’Reilly, 2006. Benthic diatoms as indicators of eutrophication in tropical streams. Hydrobiologia 573: 75–87.

    Article  CAS  Google Scholar 

  • Bere, T., & Tundisi, J. (2009). Weighted average regression and calibration of conductivity and pH of benthic diatom assemblages in streams influenced by urban pollution–São Carlos/SP, Brazil. Acta Limnologica Brasiliensia 21: 317–325.

  • Bere, T. & J. G. Tundisi, 2011. Applicability of borrowed diatom-based water quality assessment indices in streams around São Carlos-SP, Brazil. Hydrobiologia 673: 179–192.

    Article  CAS  Google Scholar 

  • Besse-Lototskaya, A., P. F. Verdonschot, M. Coste & B. Van de Vijver, 2011. Evaluation of European diatom trophic indices. Ecol Indic 11: 456–467.

    Article  Google Scholar 

  • Birks, H. H., H. Birks, R. Flower, S. Peglar & M. Ramdani, 2001. Recent ecosystem dynamics in nine North African lakes in the Cassarina Project. Aquat Ecol 35: 461–478.

    Article  Google Scholar 

  • Blinn, D. W. & P. C. E. Bailey, 2001. Land-use influence on stream water quality and diatom communities in Victoria, Australia: a response to secondary salinization. Hydrobiologia 466: 231–244.

    Article  CAS  Google Scholar 

  • Blinn, D., S. Halse, A. Pinder & R. Shiel, 2004. Diatom and micro-invertebrate communities and environmental determinants in the western Australian wheatbelt: a response to salinization. Hydrobiologia 528(1–3): 229–248.

    Article  Google Scholar 

  • Bohm, J. S., M. Schuch, A. Düpont & E. A. Lobo, 2013. Response of epilithic diatom communities to downstream nutrient increases in Castelhano Stream, Venâncio Aires City, RS, Brazil. J Environ Prot 2013(4): 20–26.

    Article  Google Scholar 

  • Bunn, S. E., P. M. Davies & T. D. Mosisch, 1999. Ecosystem measures of river health and their response to riparian and catchment degradation. Freshw Biol 41: 333–345.

    Article  Google Scholar 

  • Chessman, B. C., 1986. Diatom flora of an Australian river system: spatial patterns and environmental relationships. Freshw Biol 16: 805–819.

    Article  Google Scholar 

  • Chessman, B., I. Growns, J. Currey & N. Plunkett-Cole, 1999. Predicting diatom communities at the genus level for the rapid biological assessment of rivers. Freshw Biol 41: 317–331.

    Article  Google Scholar 

  • Chessman, B. C., N. Bate, P. A. Gell & P. Newall, 2007. A diatom species index for bioassessment of Australian rivers. Mar Freshw Res 58: 542–557.

    Article  Google Scholar 

  • Connell, J. H., 2002. Diversity in tropical rain forests and coral reefs. Found Trop For Biol Class Pap Comment 199: 259.

    Google Scholar 

  • Cooper, S. R., 1995. Chesapeake Bay watershed historical land use: impact on water quality and diatom communities. Ecol Appl 5: 703–723.

    Article  Google Scholar 

  • Cooper S (2001) Estuarine paleoenvironmental reconstructions using diatoms. In: Stoermer EF, Smol JP (eds) The diatoms: applications for the environmental and Earth Sciences. Cambridge University Press, Cambridge, pp 352–366.

  • Davies, P. E. & M. Nelson, 1994. Relationships between riparian buffer widths and the effects of logging on stream habitat, invertebrate community composition and fish abundance. Mar Freshw Res 45: 1289–1305.

    Article  Google Scholar 

  • De la Rey, P., J. Taylor, A. Laas, L. Van Rensburg & A. Vosloo, 2004. Determining the possible application value of diatoms as indicators of general water quality: a comparison with SASS 5. Water SA 30: 325–332.

    Google Scholar 

  • Dela-Cruz, J., T. Pritchard, G. Gordon & P. Ajani, 2006. The use of periphytic diatoms as a means of assessing impacts of point source inorganic nutrient pollution in south-eastern Australia. Freshw Biol 51: 951–972.

    Article  CAS  Google Scholar 

  • Dodds W, Whiles M (2010) Freshwater ecology, concepts and environmental applications of limnology. Elsevier, Inc., San Diego, California, pp 1–553.

  • Dodson, S., 2005. Introduction to limnology. McGraw Hill, New York.

    Google Scholar 

  • Dudgeon, D., A. H. Arthington, M. O. Gessner, Z. Kawabata, D. J. Knowler, C. Leveque, et al., 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81: 163–182.

    Article  PubMed  Google Scholar 

  • EC, 2000. Directive 2000/60/EC of the European Parliament and of the council of 23 October 2000 establishing a framework for community action in the field of water policy. Off J Eur Communities L327: 1–72.

    Google Scholar 

  • Elias, C. L., N. Vieira, M. J. Feio & S. F. P. Almeida, 2012. Can season interfere with diatom ecological quality assessment? Hydrobiologia 695: 223–232.

    Article  CAS  Google Scholar 

  • Eyre, B., 1997. Water quality changes in an episodically flushed sub-tropical Australian estuary: a 50 year perspective. Mar Chem 59: 177–187.

    Article  CAS  Google Scholar 

  • Foged, N., 1978. Diatoms in eastern Australia. Bibl Phycol Band 41: 1–243.

    Google Scholar 

  • Gay J, Ferguson A (2012) Review of water quality in Rocky Mouth Creek, Final Report. In: Aquatic biogeochemical and ecological research. Richmond River County Council, p 46.

  • Gell, P. A., Sonneman, J. A., Reid, M., Illman, M. A., & Sincock, A. J. (1999). An illustrated key to common diatom genera from Southern Australia CRCFE and MDBC Identification Guide No. 26. (pp. 1–63). Cooperative Research Centre for Freshwater Ecology.

  • Gell, P., J. Tibby, J. Fluin, P. Leahy, M. Reid, K. Adamson, S. Bulpin, A. MacGregor, P. Wallbrink, G. Hancock & B. Walsh, 2005. Accessing limnological change and variability using fossil diatom assemblages, south-east Australia. River Res Appl 21(2–3): 257–269.

  • Gómez, N. & M. Licursi, 2001. The Pampean Diatom Index (IDP) for assessment of rivers and streams in Argentina. Aquat Ecol 35: 173–181.

    Article  Google Scholar 

  • Grudzinska, I., Saarse, L., Vassiljev, J., & Heinsalu, A. (2014). Biostratigraphy, shoreline changes and origin of the Limnea Sea lagoons in northern Estonia: the case study of Lake Harku. Baltica 27: 15–24.

  • Hanson, G. C., P. M. Groffman & A. J. Gold, 1994. Denitrification in riparian wetlands receiving high and low groundwater nitrate inputs. J Environ Qual 23: 917–922.

  • Haynes, D., R. Skinner, J. Tibby, J. Cann & J. Fluin, 2011. Diatom and foraminifera relationships to water quality in The Coorong, South Australia, and the development of a diatom-based salinity transfer function. J Paleolimnol 46(4): 543–560.

    Article  Google Scholar 

  • Hermany, G., A. Schwarzbold, E. Lobo, M. Oliveira & R. Santa Cruz do Sul, 2006. Ecology of the epilithic diatom community in a low-order stream system of the Guaíba hydrographical region: subsidies to the environmental monitoring of southern Brazilian aquatic systems. Acta Limnol Bras 18(1): 9–27.

    Google Scholar 

  • Herricks, E. E. & D. J. Schaeffer, 1985. Can we optimize biomonitoring? Environ Manag 9: 487–492.

    Article  Google Scholar 

  • Hodgson D, Vyverman W, Tyler P (1997) Diatoms of meromictic lakes adjacent to the Gordon River, and of the Gordon River estuary in south-west Tasmania. J. Cramer Publishing, Stuttgart, pp 1–173.

  • Jewitt, G., 2002. Can Integrated Water Resources Management sustain the provision of ecosystem goods and services? Phys Chem Earth A/B/C 27(11–22): 887–895.

    Article  Google Scholar 

  • Juggins, S., 2007. C2: software for ecological and palaeoecological data analysis and visualisation 709 (version 1.5). Newcastle University, Newcastle.

    Google Scholar 

  • Kelly, M. & B. Whitton, 1995. The trophic diatom index: a new index for monitoring eutrophication in rivers. J Appl Phycol 7: 433–444.

    Article  Google Scholar 

  • Kelly, M. G. & B. A. Whitton, 1998. Biological monitoring of eutrophication in rivers. Hydrobiologia 384: 55–67.

    Article  Google Scholar 

  • Kelly, M. K. & M. Yallop, 2012. A streamlined taxonomy for the Trophic Diatom Index. Environment Agency, Bristol: 24.

    Google Scholar 

  • Kelly, M. G., A. Cazaubon, E. Coring, A. Dell’Uomo, L. Ector, B. Goldsmith, et al., 1998. Recommendations for the routine sampling of diatoms for water quality assessments in Europe. J Appl Phycol 10: 215–224.

    Article  Google Scholar 

  • Kelly, M. G., C. Adams, A. C. Graves, J. Jamieson, J. Krokowski, E. B. Lycett, et al., 2001. The trophic diatom index: a user’s manual. Revised edition. R&D Technical Report E2/TR2. Environment Agency, Bristol, p 135.

  • Kelly, M. G., H. Bennion, E. J. Cox, B. Goldsmith, J. Jamieson, S. Juggins, et al., 2005. Common freshwater diatoms of Britain and Ireland: an interactive key. Environment Agency. http://craticula.ncl.ac.uk/EADiatomKey/html/taxon13160100.html. Accessed 11 Sept 2014.

  • Kelly, M., L. King, B. Ní Chatháin, 2009a. The conceptual basis of ecological-status assessments using diatoms. In: Paper presented at the biology and environment: proceedings of the Royal Irish Academy, pp 175–189.

  • Kelly, M., H. Bennion, A. Burgess, J. Ellis, S. Juggins, R. Guthrie, et al., 2009b. Uncertainty in ecological status assessments of lakes and rivers using diatoms. Hydrobiologia 633: 5–15.

    Article  CAS  Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1986. Bacillariophyceae 1. Teil: Naviculaceae. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds.), Süßwasserflora von Mitteleuropa. Gustav Fischer, Stuttgart: 876.

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1988. Bacillariophyceae 2. Teil.: Bacillariaceae, Epithemiaceae, Surirellaceae. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds.), Süßwasserflora von Mitteleuropa. Gustav Fischer, Stuttgart: 596.

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1991a. Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds.), Die Süßwasserflora von Mitteleuropa. Gustav Fischer, Stuttgart: 576.

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1991b. Bacillariophyceae 4. Teil: Achnanthaceae. Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema. Gesamtliteraturverzeichnis Teil 1-4. In Ettl, H., G. Gärtner, J. Gerloff, H. Heynig & D. Mollenhauer (eds.), Die Süßwasserflora von Mitteleuropa. Gustav Fischer, Stuttgart: 437.

    Google Scholar 

  • Lake, P., 1995. Of floods and droughts: river and stream ecosystems of Australia. In Cushing, C. E., K. W. Cummins & G. W. Minshall (eds.), River and stream ecosystems, ecosystems of the world. Elsevier, Amsterdam: 659–694.

  • Li, L., B. Zheng & L. Liu, 2010. Biomonitoring and bioindicators used for river ecosystems: definitions, approaches and trends. Procedia Environ Sci 2: 1510–1524.

    Article  Google Scholar 

  • Lobo, E., V. Callegaro, G. Hermany, D. Bes, C. Wetzel & M. Oliveira, 2004. Use of epilithic diatoms as bioindicators from lotic systems in southern Brazil, with special emphasis on eutrophication. Acta Limnol Bras 16(1): 25–40.

    Google Scholar 

  • Lobo, E. A., C. E. Wetzel, L. Ector, K. Katoh, S. Blanco & S. Mayama, 2010. Response of epilithic diatom communities to environmental gradients in subtropical temperate Brazilian rivers. Limnetica 29(2): 323–340.

    Google Scholar 

  • Logan, B. & K. H. Taffs, 2013. Relationship between diatoms and water quality (TN, TP) in sub-tropical east Australian estuaries. J Paleolimnol 50(1): 123–137.

    Article  Google Scholar 

  • Logan, B., K. H. Taffs, B. D. Eyre & A. Zawadski, 2010. Assessing changes in nutrient status in the Richmond River estuary, Australia, using paleolimnological methods. J Paleolimnol 46(4): 597–611.

    Article  Google Scholar 

  • Millennium Ecosystem Assessment, 2005. Ecosystems and human well-being: wetlands and water synthesis. World Resources Institute, Washington, DC: 1–68.

    Google Scholar 

  • Morand DT (1994) Soil landscapes of the Lismore–Ballina 1: 100 000 sheet: Mullumbimby, Byron Bay, Casino, Kyogle. Dept. of Conservation and Land Management, Soil Conservation Service, pp 1–234.

  • Mosisch, T. D., S. E. Bunn & P. M. Davies, 2001. The relative importance of shading and nutrients on algal production in subtropical streams. Freshw Biol 46(9): 1269–1278.

    Article  Google Scholar 

  • Muscio, C. 2002. The diatom pollution tolerance index: assigning tolerance values. City of Austin-Watershed Protection and Development Review Department, pp 1–17.

  • Newall, P. & C. J. Walsh, 2005. Response of epilithic diatom assemblages to urbanization influences. Hydrobiologia 532(1–3): 53–67.

    Article  Google Scholar 

  • Newall, P., N. Bate & L. Metzeling, 2006. A comparison of diatom and macroinvertebrate classification of sites in the Kiewa River system, Australia. Hydrobiologia 572: 131–149.

    Article  Google Scholar 

  • Norris, R. H. & K. R. Norris, 1995. The need for biological assessment of water quality: Australian perspective. Aust J Ecol 20: 1–6.

    Article  Google Scholar 

  • O’Driscoll, C., de Eyto, E., Rodgers, M., O’Connor, M., Asam, Z.-u.-Z., Kelly, M., & Xiao, L. (2014). Spatial and seasonal variation of peatland-fed riverine macroinvertebrate and benthic diatom assemblages and implications for assessment: a case study from Ireland. Hydrobiologia 728: 67–87.

  • Parr, J. F., K. H. Taffs & C. M. Lane, 2004. A microwave digestion technique for the extraction of fossil diatoms from coastal lake and swamp sediments. J Paleolimnol 31(3): 383–390.

  • Perna, C. & D. Burrows, 2005. Improved dissolved oxygen status following removal of exotic weed mats in important fish habitat lagoons of the tropical Burdekin River floodplain, Australia. Mar Pollut Bull 51: 138–148.

    Article  CAS  PubMed  Google Scholar 

  • Peters, N. E, G. R. Buell, E. A. Frick, 1997. Spatial and temporal variability in nutrient concentrations in surface waters of the Chattahoochee River Basin near Atlanta, Georgia. In: Hatcher KJ (ed) Proceedings of the 1997 Georgia water resources conference, Athens, Georgia, 20–22 March 1997, pp 103–112.

  • Philibert, A., P. Gell, P. Newall, B. Chessman & N. Bate, 2006. Development of diatom-based tools for assessing stream water quality in south-eastern Australia: assessment of environmental transfer functions. Hydrobiologia 572: 103–114.

    Article  CAS  Google Scholar 

  • Potapova, M. G., D. F. Charles, K. C. Ponader & D. M. Winter, 2004. Quantifying species indicator values for trophic diatom indices: a comparison of approaches. Hydrobiologia 517: 25–41.

    Article  Google Scholar 

  • Preston, B. J., 2009. Water and ecologically sustainable development in the courts. Macquarie J Int Comp Environ Law 6: 129.

    Google Scholar 

  • R Development Core Team, 2006. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Reid, M. A., J. C. Tibby, D. Penny & P. A. Gell, 1995. The use of diatoms to assess past and present water quality. Aust J Ecol 20: 57–64.

    Article  Google Scholar 

  • Resh, V. H., 2008. Which group is best? Attributes of different biological assemblages used in freshwater biomonitoring programs. Environ Monit Assess 138: 131–138.

    Article  PubMed  Google Scholar 

  • Resh, V. H. & J. K. Jackson, 1993. Rapid assessment approaches to biomonitoring using benthic macroinvertebrates. In Rosenberg, D. M. & V. H. Resh (eds.), Freshwater biomonitoring and benthic macroinvertebrates. Chapman and Hall, New York: 195–233.

    Google Scholar 

  • Rimet, F. & A. Bouchez, 2012. Biomonitoring river diatoms: implications of taxonomic resolution. Ecol Indic 15: 92–99.

    Article  Google Scholar 

  • Rous Water (2009a) Wilsons River CMP state of the catchment draft. Rous Water, Lismore, p 115.

  • Rous Water (2009b) Wilsons River catchment management plan. Rous Water, Lismore, p 22.

  • Salomoni, S. E., O. Rocha, V. L. Callegaro & E. A. Lobo, 2006. Epilithic diatoms as indicators of water quality in the Gravataí River, Rio Grande do Sul, Brazil. Hydrobiologia 559(1): 233–246.

    Article  CAS  Google Scholar 

  • Salomoni, S. E., O. Rocha, G. Hermany & E. A. Lobo, 2011. Application of water quality biological indices using diatoms as bioindicators in the Gravataí River, RS, Brazil/Aplicação de índices biológicos da qualidade água utilizando diatomáceas como bioindicadoras no rio Gravataí, RS, Brazil. Braz J Biol 71(4): 949–959.

    Article  Google Scholar 

  • Singh, K. P., A. Malik & S. Sinha, 2005. Water quality assessment and apportionment of pollution sources of Gomti River (India) using multivariate statistical techniques—a case study. Anal Chim Acta 538: 355–374.

    Article  CAS  Google Scholar 

  • Singh, I., N. Flavel & M. Bari, 2009. Coopers Creek Water Sharing Plan. Socio-economic impact assessment of changes to the flow rules. NSW Department of Water and Energy, Sydney: 1–36.

    Google Scholar 

  • Smith, V. H., G. D. Tilman & J. C. Nekola, 1999. Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ Pollut 100: 179–196.

    Article  CAS  PubMed  Google Scholar 

  • Smol, J. P., 2008. Pollution of lakes and rivers: a paleoenvironmental perspective, 2nd ed. Blackwell Publishing, Malden.

    Google Scholar 

  • Smol, J. P. & E. F. Stoermer, 2010. The diatoms: applications for the environmental and earth sciences. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Sonneman, J. A., A. J. Sincock, J. Fluin, M. A. Reid, P. Newall, J. C. Tibby, et al., 2000. An illustrated guide to common stream diatom species from temperate Australia. The Cooperative Research Centre for Freshwater Ecology Identification guide No. 33, pp 1–166.

  • Sonneman, J. A., C. J. Walsh, P. F. Breen & A. K. Sharpe, 2001. Effects of urbanization on streams of the Melbourne region, Victoria, Australia. II. Benthic diatom communities. Freshw Biol 46: 553–565.

    Article  CAS  Google Scholar 

  • Stenger-Kovács, C., L. Tóth, F. Tóth, É. Hajnal & J. Padisák, 2014. Stream order-dependent diversity metrics of epilithic diatom assemblages. Hydrobiologia 721(1): 67–75.

    Article  Google Scholar 

  • Taffs, K. H., L. J. Farago, H. Heijnis & G. Jacobsen, 2008. A diatom-based Holocene record of human impact from a coastal environment: Tuckean Swamp, eastern Australia. J Paleolimnol 39(1): 71–82.

  • Tan, X., F. Sheldon, S. E. Bunn & Q. Zhang, 2013. Using diatom indices for water quality assessment in a subtropical river, China. Environ Sci Pollut Res 20: 4164–4175.

    Article  CAS  Google Scholar 

  • Ter Braak, C. J. F., 1995. Ordination. In Jongman, R. H., C. J. Ter Braak & O. F. Van Tongeren (eds.), Data analysis in community and landscape ecology. Cambridge University Press, Cambridge: 91–173.

    Chapter  Google Scholar 

  • Thompson, R. M. & P. S. Lake, 2010. Reconciling theory and practise: the role of stream ecology. River Res Appl 26: 5–14.

    Article  Google Scholar 

  • Tibby, J. & K. H. Taffs, 2011. Palaeolimnology in eastern and southern Australian estuaries. J Paleolimnol 46(4): 503–510.

    Article  Google Scholar 

  • Townsend, S. A. & P. A. Gell, 2005. The role of substrate type on benthic diatom assemblages in the Daly and Roper Rivers of the Australian wet/dry tropics. Hydrobiologia 548(1): 101–115.

    Article  Google Scholar 

  • Verhoeven, J. T. A. & T. L. Setter, 2010. Agricultural use of wetlands: opportunities and limitations. Ann Bot 105: 155–163.

    Article  PubMed Central  PubMed  Google Scholar 

  • Vyverman, W., 1995. Diatoms from Tasmanian mountain lakes: a reference data set (TASDIAT) for environmental reconstruction and a systematic and autecological study. Bibl Diatomol Band 33: 1–192.

    Google Scholar 

  • Weilhoefer, C. L. & Y. Pan, 2007. Relationships between diatoms and environmental variables in wetlands in the Willamette Valley, Oregon, USA. Wetlands 27: 668–682.

    Article  Google Scholar 

  • Wetzel, R. G., 2001. Limnology, lake and river ecosystems, 3rd ed. Academic Press, San Diego: 850.

    Google Scholar 

  • Wu, J.-T. & L.-T. Kow, 2002. Applicability of a generic index for diatom assemblages to monitor pollution in the tropical River Tsanwun, Taiwan. J Appl Phycol 14: 63–69.

    Article  Google Scholar 

  • Yu, S.-Y., Berglund, B. E., Andrén, E., & Sandgren, P. (2004). Mid-Holocene Baltic Sea transgression along the coast of Blekinge, SE Sweden–ancient lagoons correlated with beach ridges. GFF 126: 257–272.

Download references

Acknowledgments

This Project was supported by an Australian Research Council Linkage Grant (LP130100498). We would like to thank Southern Cross University for their support with field and laboratory expenses. We thank Joanne Austin, Murphy Birnberg, Sarah Hembrow, Louise O’Neil, Daniela Stott and Matt Veness for their assistance with field work and Nev Minch for the preparation of figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sue Oeding.

Additional information

Handling editor: Judit Padisák

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 37 kb)

(DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oeding, S., Taffs, K.H. Are diatoms a reliable and valuable bio-indicator to assess sub-tropical river ecosystem health?. Hydrobiologia 758, 151–169 (2015). https://doi.org/10.1007/s10750-015-2287-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2287-0

Keywords

Navigation