Hydrobiologia

, Volume 758, Issue 1, pp 141–150 | Cite as

Concordance among fish and macroinvertebrate assemblages in streams of Indiana, USA

Primary Research Paper

Abstract

The use of multiple taxa rather than a single taxon of stream organisms in ecological studies appears to be necessary to interpret independent environmental influences and interactions. We tested if macroinvertebrate assemblages in Indiana, USA, streams were better predicted from co-occurring fish assemblages or environmental variables. We used multivariate analyses to identify significant environmental predictor variables for macroinvertebrate and fish assemblages. Macroinvertebrate distribution and relative abundance were best predicted by in-stream cover and turbidity, and fish distribution and relative abundance were best predicted by fine sediments, bedrock, water temperature, and pool habitat. Patterns in fish assemblages were not significant predictors of macroinvertebrate distribution and relative abundance. Mantel tests for covariation among fish assemblage composition and macroinvertebrate assemblage composition resulted in significant, but low correlations. Our results suggest that macroinvertebrates respond to local environmental variation, and less to local presence of fishes indicating the surrogate taxa approach has little use at the Eastern Cornbelt Plain ecoregion of Indiana. Stream surveys of multiple taxa and environmental variables are appropriate assessment methods for ecosystem integrity.

Keywords

Stream assemblage concordance Fishes Macroinvertebrates Mantel tests 

References

  1. Austin, M. P., 1985. Continuum concept, ordination methods, and niche theory. Annual Review of Ecology and Systematics 16: 39–61.CrossRefGoogle Scholar
  2. Barbour, M. T., J. Gerritsen, B. D. Snyder & J. B. Stribling, 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, 2nd Ed. EPA 841-B-99-002. U.S. Environmental Protection Agency; Office of Water; Washington, D.C.Google Scholar
  3. Bowman, M. F., R. Ingram, R. A. Reid, K. M. Somers, N. D. Yan, A. M. Paterson, G. E. Morgan & J. M. Gunn, 2008. Temporal and spatial concordance in community composition of phytoplankton, zooplankton, macroinvertebrate, crayfish, and fish on the Precambrian Shield. Canadian Journal of Fisheries and Aquatic Sciences 65: 919–932.CrossRefGoogle Scholar
  4. Brosse, S., C. J. Arbuckle & C. R. Townsend, 2003. Habitat scale and biodiversity: influence of catchment, stream reach and bedform scales on local invertebrate diversity. Biodiversity and Conservation 12: 2057–2075.CrossRefGoogle Scholar
  5. Brown, L. R., J. T. May & M. Wulff, 2012. Associations of benthic macroinvertebrate assemblages with environmental variables in the Upper Clear Creek watershed, California. Western North American Naturalist 72: 473–494.CrossRefGoogle Scholar
  6. Dolph, C. L., D. D. Huff, C. J. Chizinski & B. Vondracek, 2011. Implications of community concordance for assessing stream integrity at three nested spatial scales in Minnesota, U.S.A. Freshwater Biology 56: 1652–1669.CrossRefGoogle Scholar
  7. Douglas, M. E. & J. A. Endler, 1982. Quantitative matrix comparisons in ecological and evolutionary investigations. Journal of Theoretical Biology 99: 777–795.CrossRefGoogle Scholar
  8. Fauth, J. E., M. Bernardo, W. J. Resetarits Jr, J. Van Buskirk & S. A. McCollum, 1996. Simplifying the jargon of community ecology: a conceptual approach. The American Naturalist 147: 282–286.CrossRefGoogle Scholar
  9. Gaston, K. J., 1996. Biodiversity – congruence. Progress in Physical Geography 20: 105–112.CrossRefGoogle Scholar
  10. Gauch, H. G., 1982. Multivariate Analysis in Community Ecology. Cambridge University Press, New York.CrossRefGoogle Scholar
  11. Gioria, M., G. Bacaro & J. Feehan, 2011. Evaluating and interpreting cross-taxon congruence: potential pitfalls and solutions. Acta Oecologia 37: 187–194.CrossRefGoogle Scholar
  12. Grenouillet, G., S. Brosse, L. Tudesque, S. Lek, Y. Baraillé & G. Loot, 2008. Concordance among stream assemblages and spatial autocorrelation along a fragmented gradient. Diversity and Distributions 14: 592–603.CrossRefGoogle Scholar
  13. Heino, J., 2010. Are indicator groups and cross-taxon congruence useful for predicting biodiversity in aquatic ecosystems? Ecological Indicators 10: 112–117.CrossRefGoogle Scholar
  14. Heino, J. & H. Mykra, 2008. Control of stream insect assemblages: roles of spatial configuration and local environmental factors. Ecological Entomology 33: 614–622.CrossRefGoogle Scholar
  15. Heino, J., P. Louhi & T. Muotka, 2004. Identifying the scales of variability in stream macroinvertebrate abundance, functional composition, and assemblage structure. Freshwater Biology 49: 1230–1239.CrossRefGoogle Scholar
  16. Heino, J., R. Paavola, R. Virtanen & T. Muotka, 2005. Searching for biodiversity indicators in running waters: do bryophytes, macroinvertebrates, and fish show congruent diversity patterns? Biodiversity and Conservation 14: 415–428.CrossRefGoogle Scholar
  17. Infante, D. M., J. D. Allan, S. Linke & R. H. Norris, 2009. Relationship of fish and macroinvertebrate assemblages to environmental factors: implications for community concordance. Hydrobiologia 623: 87–103.CrossRefGoogle Scholar
  18. Jackson, D. A. & H. H. Harvey, 1993. Fish and benthic invertebrates: community concordance and community-environment relationships. Canadian Journal of Fisheries and Aquatic Sciences 50: 2641–2651.CrossRefGoogle Scholar
  19. Kilgour, B. W. & D. R. Barton, 1999. Associations between stream fish and benthos across environmental gradients in southern Ontario, Canada. Freshwater Biology 41: 553–566.CrossRefGoogle Scholar
  20. Lammert, M. & J. D. Allan, 1999. Assessing biotic integrity of streams: effects of scale in measuring the influence of land use/cover and habitat structure on fish and macroinvertebrates. Environmental Management 23: 257–270.PubMedCrossRefGoogle Scholar
  21. Larsen, S., L. Mancini, G. Pace, M. Scalici & L. Tancioni, 2012. Weak concordance between fish and macroinvertebrates in Mediterranean streams. PLoS One 7: e51115.PubMedCentralPubMedCrossRefGoogle Scholar
  22. Li, J., A. Herlihy, W. Gerth, P. Kaufmann, S. Gregory, S. Urquhart & D. P. Larsen, 2001. Variability in stream macroinvertebrates at multiple spatial scales. Freshwater Biology 46: 87–97.CrossRefGoogle Scholar
  23. Merritt, R. W., K. W. Cummins & M. B. Berg, 2008. An Introduction to the Aquatic Insects of North America, 4th ed. Kendall/Hunt Publishing Co., Dubuque.Google Scholar
  24. Paavola, R., T. Muotka, R. Virtanen, J. Heino & P. Kreivi, 2003. Are biological classifications of headwater streams concordant across multiple taxonomic groups? Freshwater Biology 48: 1912–1923.CrossRefGoogle Scholar
  25. Paavola, R., T. Muotka, R. Virtanen, J. Heino, D. Jackson & A. Mäki-Petäys, 2006. Spatial scale affects community concordance among fishes, benthic macroinvertebrates, and bryophytes in streams. Ecological Applications 16: 368–379.PubMedCrossRefGoogle Scholar
  26. Paszkowski, C. A. & W. M. Tonn, 2000. Community concordance between the fish and aquatic birds of lakes in northern Alberta, Canada: the relative importance of environmental and biotic factors. Freshwater Biology 43: 421–437.CrossRefGoogle Scholar
  27. Peckarsky, B. L., P. R. Fraissinet, M. A. Penton & D. J. Conklin, 1990. Freshwater Macroinvertebrates of Northeastern North America. Cornell University Press, Ithaca.Google Scholar
  28. Pflieger, W. L., 1997. The Fishes of Missouri. Missouri Department of Conservation, Jefferson City.Google Scholar
  29. R Core Team, 2013. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org/.
  30. Rankin, E. T., 1989. The Qualitative Habitat Evaluation Index (QHEI): Rationale, Methods, and Application. State of Ohio Environmental Protection Agency, Columbus.Google Scholar
  31. Robinson, C. T., N. Schuwirth, S. Baumgartner & C. Stamm, 2014. Spatial relationships between land-use, habitat, water quality and lotic macroinvertebrates in two Swiss catchments. Aquatic Sciences. doi:10.1007/s00027-014-0341-z.Google Scholar
  32. Saetersdal, M. & I. Gjerde, 2011. Prioritising conservation areas using species surrogate measures: consistent with ecological theory? Journal of Applied Ecology 48: 1236–1240.CrossRefGoogle Scholar
  33. Santoul, F., A. Soulard, J. Figuerola, R. Céréghino & S. Mastrorillo, 2004. Environmental factors influencing local fish species richness and differences between hydroregions in south-western France. International Review of Hydrobiology 89: 79–87.CrossRefGoogle Scholar
  34. Simon, T. P., 2011. Fishes of Indiana. Indiana University Press, Bloomington.Google Scholar
  35. Smith, P. W., 1979. The Fishes of Illinois. University of Illinois Press, Urbana and Chicago.Google Scholar
  36. ter Braak, C. J. F. & A. P. Schaffers, 2004. Co-correspondence analysis: a new ordination method to relate two community compositions. Ecology 85: 834–846.CrossRefGoogle Scholar
  37. ter Braak, C. J. F. & P. Smilauer, 2012. Canoco 5, Windows release. www.canoco5.com.
  38. Thorp, J. H. & A. P. Covich, 2010. Ecology and Classification of North American Freshwater Invertebrates. Elsevier, London.Google Scholar
  39. Townsend, C. R., S. Dolédec, R. Norris, K. Peacock & C. Arbuckle, 2003. The influence of scale and geography on relationships between stream community composition and landscape variables: description and prediction. Freshwater Biology 48: 768–785.CrossRefGoogle Scholar
  40. Virtanen, R., J. Ilmonen, L. Paasivirta & T. Muotka, 2009. Community concordance between bryophyte and insect assemblages in boreal springs: a broad-scale study in isolated habitats. Freshwater Biology 54: 1651–1662.CrossRefGoogle Scholar
  41. Warfe, D. M., N. E. Pettit, R. H. Magierowski, B. J. Pusey, P. M. Davies, M. M. Douglas & S. E. Bunn, 2013. Hydrological connectivity structures concordant plant and animals assemblages according to niche rather than dispersal processes. Freshwater Biology 58: 292–305.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Biology, Aquatic Biology and Fisheries CenterBall State UniversityMuncieUSA

Personalised recommendations