Skip to main content

Advertisement

Log in

Species area relationship (SAR) for benthic diatoms: a study on aquatic islands

  • PHYTOPLANKTON & SPATIAL GRADIENTS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The question of how species richness depends on the area is one of the most intensively studied subjects in biogeography. Many studies have reported this pattern for terrestrial and macroscopic taxa; however, microscopic and aquatic communities have received much less attention in the literature. The aim of our study was to reveal the relationship between the habitat size and richness of freshwater benthic diatom assemblages. We hypothesized that if the size of studied water bodies covers wide spatial scales, the species-area relationship (SAR) could be described by a sigmoid model. Benthic diatom assemblages were investigated in pools, ponds and lakes of various sizes (10−2–108 m2). We demonstrated that although the SAR in the log-log space can be described by a linear model, the linear breakpoint regression provides better fit to data. Using this technique a characteristic small island effect (SIE) could be distinguished. The SIE fell in the range of 10−2–104 m2. We also demonstrated that species richness of the diatom guilds is remarkably different in the various size ranges of the water bodies. We also demonstrated that the slope of the SAR (z value) is similar to those values that have been reported for other microbial organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ács, É., K. Szabó, K. T. Kiss & F. Hindák, 2003. Benthic algal investigations in the Danube River and some of its main tributaries from Germany to Hungary. Biologia 58: 545–554.

    Google Scholar 

  • Ács, É., M. Reskóné Nagy, K. Szabó, G. Taba & K. T. Kiss, 2005. Application of epiphytic diatoms in water quality monitoring of Lake Velence – recommendations and assignments. Acta Botanica Hungarica 47: 211–223.

    Article  Google Scholar 

  • Archibald, E. E. A., 1949. The specific character of plant communities: II. A quantitative approach. The Journal of Ecology 37: 260–274.

    Article  Google Scholar 

  • Arrhenius, O., 1921. Species and area. Journal of Ecology 9: 95–99.

    Article  Google Scholar 

  • Azovsky, A. I., 2002. Size-dependent species–area relationships in benthos: is the world more diverse for microbes? Ecography 25: 273–282.

    Article  Google Scholar 

  • Barinova, S. & A. Stenina, 2013. Diatom diversity and ecological variables in the Arctic lakes of the Kostyanoi Nos Cape (Nenetsky Natural Reserve, Russian North). Plant Biosystems 147(2): 397–410.

    Article  Google Scholar 

  • Bell, T., D. Ager, J.-I. Song, J. A. Newman, I. P. Thompson, A. K. Lilley & C. J. van der Gast, 2005. Larger islands house more bacterial taxa. Science 308: 1884.

    Article  CAS  PubMed  Google Scholar 

  • Berthon, V., A. Bouchez & F. Rimet, 2011. Using diatom life–forms and ecological guilds to assess organic pollution and trophic level in rivers: a case study of rivers in south–eastern France. Hydrobiologia 673: 259–271.

    Article  CAS  Google Scholar 

  • Bolla, B., G. Borics, K. T. Kiss, M. Reskóné Nagy, G. Várbíró & É. Ács, 2010. Recommendations for ecological status assessment of lake Balaton (largest shallow lake of central Europe), based on benthic diatom communities. Vie et Milieu-Life and Environment 60: 197–208.

    Google Scholar 

  • Borics, G., B. Tóthmérész, I. Grigorszky, J. Padisák, G. Várbíró & S. Szabó, 2003. Algal assemblage types of boglakes in Hungary and their relation to water chemistry, hydrological conditions and habitat diversity. Hydrobiologia 502: 145–155.

    Article  CAS  Google Scholar 

  • Borics, G., G. Várbíró, I. Grigorszky, E. Krasznai, S. Szabó & K. T. Kiss, 2007. A new evaluation technique of potamo-plankton for the assessment of the ecological status of rivers. Archive für Hydrobiologie Suppl. 17: 465–486.

    Google Scholar 

  • Borics, G., B. A. Lukács, I. Grigorszky, Z. L. Nagy, L. G. Tóth, Á. Bolgovics, S. Szabó, J. Görgényi & G. Várbíró, 2014. Phytoplankton-based shallow lake types in the Carpathian basin: steps towards a bottom-up typology. Fundamental and Applied Limnology 184: 23–34.

    Article  Google Scholar 

  • Borics, G., B. Tóthmérész, G. Várbíró, I. Grigorszky, A. Czébely & J. Görgényi, 2015. Functional phytoplankton distribution in hypertrophic systems across water body size. Hydrobiologia. doi:10.1007/s10750-015-2268-3.

    Google Scholar 

  • Browne, R. A., 1981. Lakes as islands: biogeographic distribution, turnover rates, and species composition in the lakes of central New York. Journal of Biogeography 8: 75–83.

    Article  Google Scholar 

  • CEN. (2003). Water quality – guidance standard for the routine sampling and pretreatment of benthic diatoms from rivers. EN 13946: 2003. Comité Européen de Normalisation, Geneva: 14.

  • Chao, A., 1987. Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43: 783–791.

    Article  CAS  PubMed  Google Scholar 

  • Cholnoky, B., 1927. Untersuchungen tiber die Ökologie der Epiphyten. Archiv für Hydrobiologie 18: 661–704.

    Google Scholar 

  • Cholnoky, B., 1929. Epiphyten-Untersuchungen im Balatonsee. Internationale Revue der gesamlen Hydrobioiogie 22: 313–345.

    Article  Google Scholar 

  • Connor, E. F. & E. D. McCoy, 2001. Species–area relationships. In Levin, S. A. (Ed.), Encyclopedia of Biodiversity, Vol. 5. Academic Press, New York.

    Google Scholar 

  • Dengler, J., 2009. Which function describes the species–area relationship best? A review and empirical evaluation. Journal of Biogeography 36: 728–744.

    Article  Google Scholar 

  • Díaz, S. & M. Cabido, 2001. Vive la différence: plant functional diversity matters to ecosystem processes. Trends in Ecology and Evolution 16: 464–655.

    Google Scholar 

  • Dodson, S. I., 1992. Predicting crustacean zooplankton species richness. Limnology and Oceanography 37: 848–856.

    Article  Google Scholar 

  • Dolan, J. R., 2005. Biogeography of aquatic microbes. Aquatic Microbial Ecology 41: 39–48.

    Article  Google Scholar 

  • Finlay, B. J., 2002. Global dispersal of free-living microbial eukaryote species. Science 296: 1061–1063.

    Article  CAS  PubMed  Google Scholar 

  • Gentile, G. & R. Argano, 2005. Island biogeography of the Mediterranean sea: the species relationship for terrestrial isopods. Journal of Biogeography 32: 1715–1726.

    Article  Google Scholar 

  • Gleason, H. A., 1922. On the relation between species and area. Ecology 3: 158–162.

    Article  Google Scholar 

  • Gotelli, N. J. & R. K. Colwell, 2011. Estimating species richness. In Magurran, A. E. & B. J. McGill (eds), Biological Diversity: Frontiers in Measurement and Assessment. Oxford University Press, Oxford.

    Google Scholar 

  • Hammer, Ø., D. A. T. Harper & P. D. Ryan, 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electron 4: 9.

    Google Scholar 

  • Hanski, I. & M. Gyllenberg, 1997. Uniting two general patterns in the distribution of species. Science 275: 397–400.

    Article  CAS  PubMed  Google Scholar 

  • Hastie, T. & R. Tibshirani, 1990. Generalized Additive Models. Chapman and Hall, London.

    Google Scholar 

  • He, F. & P. Legendre, 1996. On species–area relations. American Naturalist 148: 719–737.

    Article  Google Scholar 

  • Hofmann, G., M. Wermun & H. Lange-Bertalot, 2011. Diatomeen in Süßwasser-Benthos von Mitteleuropa. Gantner Verlag/Koeltz Scientific Books, Königstein, Germany, A.R.G.

    Google Scholar 

  • Horner-Devine, M. C., M. Lage, J. B. Hughes & B. J. M. Bohannan, 2004. A taxa-area relationship for bacteria. Nature 432: 750–753.

    Article  CAS  PubMed  Google Scholar 

  • Istvánovics, V. & M. Honti, 2011. Phytoplankton growth in three rivers: the role of meroplankton and the benthic retention hypothesis. Limnology and Oceanography 56: 1439–1452.

    Article  Google Scholar 

  • Kelly, M. G., A. Cazaubon, E. Coring, A. Dell’Uomo, L. Ector, B. Goldsmith, H. Guasch, J. Hürlimann, A. Jarlman, B. Kawecka, J. Kwandrans, R. Laugaste, E.-A. Lindstrøm, M. Leitao, P. Marvan, J. Padisák, E. Pipp, J. Prygiel, E. Rott, S. Sabater, H. van Dam & J. Vizinet, 1998. Recommendations for the routine sampling of diatoms for water quality assessments in Europe. Journal of Applied Phycology 10: 215–224.

    Article  Google Scholar 

  • Kahlert, M. & S. Gottschalk, 2014. Differences in benthic diatom assemblages between streams and lakes in Sweden and implications for ecological assessment. Freshwater Science 33: 655–669.

    Article  Google Scholar 

  • Kepner Jr, R. L. & J. R. Pratt, 1994. Use of fluorochromes for direct enumeration of total bacteria in environmental samples: past and present. Microbiological Reviews 58: 603–615.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kilburn, P. D., 1966. Analysis of the species–area relation. Ecology 47: 831–843.

    Article  Google Scholar 

  • Krammer, K., 2003. Diatoms of the European Inland Waters and comparable habitats. In Lange-Berlot, H. (Ed.), Cymbopleura, Delicata, Navicymbula, Gomphocymbellopsis, Afrocymbella, Vol. 4. A. R. Gantner Verlag, Ruggell.

    Google Scholar 

  • Krammer, H. & H. Lange-Bertalot, 1986–1991. Bacillariophyceae. In Ettl, H., G. Gärtner, J. Gerloff, H., Heynig & D. Mollenhauer (eds), Süßwasserflora von Mitteleuropa 2 (1–4). Gustav Fischer, Stuttgart.

  • Krasznai, E., G. Borics, G. Várbíró, A. Abonyi, J. Padisák, C. Deák & B. Tóthmérész, 2010. Characteristics of the pelagic phytoplankton in shallow oxbows. Hydrobiologia 639: 261–269.

    Article  Google Scholar 

  • Kruk, C., V. L. M. Huszar, E. T. H. M. Peeters, S. Bonilla, L. Costa, M. Lürling, C. S. Reynolds & M. Scheffer, 2010. A morphological classification capturing functional variation in phytoplankton. Freshwater Biology 55: 614–627.

    Article  Google Scholar 

  • Lange, K., A. Liess, J. J. Piggott, C. R. Townsend & C. D. Matthaei, 2011. Light, nutrients and grazing interact to determine stream diatom community composition and functional group structure. Freshwater Biology 56: 264–278.

    Article  Google Scholar 

  • Lomolino, M. V., 2000. Ecology’s most general, yet protean pattern: the species–area relationship. Journal of Biogeography 27: 17–26.

    Article  Google Scholar 

  • Lomolino, M. V., 2001. The species–area relationship: new challenges for an old pattern. Progress in Physical Geography 25: 1–21.

    Google Scholar 

  • Lomolino, M. V. & M. D. Weiser, 2001. Towards a more general species–area relationship: diversity on all islands, great and small. Journal of Biogeography 28: 431–445.

    Article  Google Scholar 

  • MacArthur, R. H. & E. O. Wilson, 1967. The Theory of Island Biogeography. Princeton University Press, Princeton.

    Google Scholar 

  • Matthews, T. J., F. Guilhaumon, K. A. Triantis, M. K. Borregaard & R. J. Whittaker, 2015. On the form of species–area relationships in habitat islands and true islands. Global Ecology and Biogeography. doi:10.1111/geb.12269.

    Google Scholar 

  • Mazaris, A. D., M. Moustaka-Gouni, E. Michaloudi & D. C. Bobori, 2010. Biogeographical patterns of freshwater micro- and macroorganisms: a comparison between phytoplankton, zooplankton and fish in the eastern Mediterranean. Journal of Biogeography 37: 1341–1351.

    Article  Google Scholar 

  • Ovreas, L. & T. P. Curtis, 2011. Microbial diversity and ecology. In Magurran, A. E. & B. J. McGill (eds), Biological Diversity: Frontiers in Measurement and Assessment. Oxford University Press, Oxford.

    Google Scholar 

  • Passy, S., 2007. Diatom ecological guilds display distinct and predictable behavior along nutrient and disturbance gradients in running waters. Aquatic Botany 86: 171–178.

    Article  Google Scholar 

  • Passy, S. I. & C. A. Larson, 2011. Succession in stream biofilms is an environmentally driven gradient of stress tolerance. Microbial Ecology 62: 414–424.

    Article  CAS  PubMed  Google Scholar 

  • Peay, K. G., T. D. Bruns, P. G. Kennedy, S. E. Bergemann & M. Garbelotto, 2007. A strong species–area relationship for eukaryotic soil microbes: island size matters for ectomycorrhizal fungi. Ecology Letters 10: 470–480.

    Article  PubMed  Google Scholar 

  • Preston, F. W., 1962. The canonical distribution of commonness and rarity. Part I. Ecology 43: 185–215.

    Article  Google Scholar 

  • Reche, I., E. Pulido-Villena, R. Morales-Baquero & E. O. Casamayor, 2005. Does ecosystem size determine aquatic bacterial richness? Ecology 86: 1715–1722.

    Article  Google Scholar 

  • Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.

    Article  Google Scholar 

  • Rimet, F. & A. Bouchez, 2012. Life-forms, cell-sizes and ecological guilds of diatoms in European rivers. Knowledge and Management of Aquatic Ecosystems 406: 01.

    Article  Google Scholar 

  • Salmaso, N. & J. Padisák, 2007. Morpho-functional groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia 578: 97–112.

    Article  Google Scholar 

  • Schoener, T. W., 1976. The species–area relation within archipelagos: models and evidence from island land birds. Proceedings of the International Ornithological Congress 16: 628–642.

    Google Scholar 

  • Shmida, A. & M. V. Wilson, 1985. Biological determinants of species diversity. Journal of Biogeography 12: 1–20.

    Article  Google Scholar 

  • Smith, V. H., B. L. Foster, J. P. Grover, R. D. Holt, M. A. Leibold & F. Jr. deNoyelles, 2005. Phytoplankton species richness scales consistently from laboratory microcosms to the world’s oceans. PNAS 102: 4393–4396.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Souffreau, C., P. Vanormelingen, K. Sabbe & W. Vyverman, 2013. Tolerance of resting cells of freshwater and terrestrial benthic diatoms to experimental desiccation and freezing is habitat-dependent. Phycologia 52: 246–255.

    Article  Google Scholar 

  • Stenger-Kovács, C., E. Lengyel, L. O. Crossetti, V. Üveges & J. Padisák, 2013. Diatom ecological guilds as indicators of temporally changing stressors and disturbances in the small Torna-stream, Hungary. Ecological Indicators 24: 138–147.

    Article  Google Scholar 

  • Somerville, C. C., I. T. Knight, W. L. Straube & R. R. Colwell, 1989. Simple, rapid method for direct isolation of nucleic acids from aquatic environments. Applied and Environmental Microbiology 1989: 548–554.

    Google Scholar 

  • Szabó, K., É. Ács, E. Pápista, K. T. Kiss, S. Barreto & J. Makk, 2001. Periphyton and phytoplankton in the Soroksár-Danube in Hungary. I. Periphytic algae on reed stems. Acta Botanica Hungarica 43: 13–35.

    Article  Google Scholar 

  • Szabó, K., K. T. Kiss, L. Ector, M. Kecskés & É. Ács, 2004. Benthic diatom flora in a small Hungarian tributary of River Danube (Rákos stream). Archiv für Hydrobiologie Suppl., 150 Algological Studies 111: 79–94.

  • Szabó, K., K. T. Kiss, G. Taba & É. Ács, 2005. Epiphytic diatoms of the Tisza River, Kisköre Reservoir and some oxbows of the Tisza River after the cyanide and heavy metal pollution in 2000. Acta Botanica Croatica 64: 1–46.

    Google Scholar 

  • Ter Braak, C. J. F. & P. Šmilauer, 2012. Canoco reference manual and user’s guide: software ordination, version 5.0. Microcomputer Power, Ithaca, USA: 496.

  • Tjørve, E., 2003. Shapes and functions of species–area curves: a review of possible models. Journal of Biogeography 30: 827–835.

    Article  Google Scholar 

  • Triantis, K. A. & S. Sfenthourakis, 2012. Island biogeography is not a single-variable discipline: the small island effect debate. Diversity and Distributions 18: 92–96.

    Article  Google Scholar 

  • van Kerckvoorde, A., K. Trappeniers, I. Nijs & L. Beyens, 2000. Terrestrial soil diatom assemblages from different vegetation types in Zackenberg (Northeast Greenland). Polar Biology 23: 392–400.

    Article  Google Scholar 

  • van Dam, H., C. Stenger-Kovács, É. Ács, G. Borics, K. Buczkó, É. Hajnal, É. Soróczki-Pintér, G. Várbíró, B. Tóthmérész & J. Padisák, 2007. Implementation of the European water framework directive: development of a system for water quality assessment of Hungarian running waters with diatoms. Archiv für Hydrobiologie Suppl. Large Rivers 17: 339–383.

  • Várbíró, G., É. Ács, G. Borics, K. Érces, G. Fehér, I. Grigorszky, T. Japport, G. Kocsis, E. Krasznai, K. Nagy, Zs. Nagy-László, Zs. Pilinszky & K.T. Kiss, 2007. Use of self-organising maps SOM for characterization of riverine phytoplankton associations in Hungary. Archiv für Hydrobiologie Suppl. 161: 383–394.

  • Whitaker, R. J., D. W. Grogan & J. W. Taylor, 2003. Geographic barriers isolate endemic populations of hyperthermophilic archea. Science 301: 976–978.

    Article  CAS  PubMed  Google Scholar 

  • Williams, M. R., B. B. Lamont & J. D. Henstridge, 2009. Species–area functions revisited. Journal of Biogeography 36: 1994–2004.

    Article  Google Scholar 

  • Willig, M. R. & S. K. Lyons, 2000. A hemispheric assessment of scale dependence in latitudinal gradients of species richness. Ecology 80: 248–292.

    Google Scholar 

  • Woodcock, S., T. P. Curtis, I. M. Head, M. Lunn & W. T. Sloan, 2006. Taxa–area relationships for microbes: the unsampled and the unseen. Ecology Letters 9: 805–812.

    Article  PubMed  Google Scholar 

  • Zhou, J., S. Kang, C. W. Schadt & C. T. Garten Jr, 2008. Spatial scaling of functional gene diversity across various microbial taxa. Proceedings of the National Academy of Sciences 105: 7768–7773.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by OTKA Grant K104279 and the Bolyai János Fellowship of the Hungarian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ágnes Bolgovics.

Additional information

Guest editors: Luigi Naselli-Flores and Judit Padisák / Biogeography and Spatial Patterns of Biodiversity of Freshwater Phytoplankton

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolgovics, Á., Ács, É., Várbíró, G. et al. Species area relationship (SAR) for benthic diatoms: a study on aquatic islands. Hydrobiologia 764, 91–102 (2016). https://doi.org/10.1007/s10750-015-2278-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2278-1

Keywords

Navigation