Skip to main content
Log in

Effects of resource distribution on the cost of predator avoidance behaviour in tadpoles

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Tadpoles reduce activity and increase hiding in the presence of dragonfly larvae. Several studies demonstrate that tadpoles showing this behaviour have slower growth, however, other studies have found no effect or even positive growth in tadpoles exposed to predators. A recent study demonstrated that swimming is an energetically expensive activity for Bufo arabicus tadpoles. Therefore, if food resources are abundant close to refuges, reduced activity may be an advantage and could offset the cost of reduced foraging. I tested this hypothesis by growing B. arabicus tadpoles with food provided either near or away from shelters, in the presence or absence of caged dragonfly larvae. In the presence of dragonfly larvae, tadpoles provided with food close to shelters were significantly larger than those with food further away. Control tadpoles under both food treatments were intermediate in size, although not statistically different from the predator + near food tadpoles. The results indicate that access to resources is the main determinant of growth in B. arabicus tadpoles and that the energetic cost of swimming is a secondary factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barry, M. J., 1994. The costs of crest induction for Daphnia carinata. Oecologia 97: 278–288.

    Article  Google Scholar 

  • Barry, M. J., 2014a. The energetic cost of foraging explains growth anomalies in tadpoles exposed to predators. Physiological and Biochemical Zoology 87: 829–836.

    Article  PubMed  Google Scholar 

  • Barry, M. J., 2014b. Fluoxetine inhibits predator avoidance responses in tadpoles. Toxicological and Environmental Chemistry 96: 641–649.

    Article  CAS  Google Scholar 

  • Barry, M. J. & S. Syal, 2013. Metabolic responses of tadpoles to chemical predation cues. Hydrobiologia 700: 267–276.

    Article  Google Scholar 

  • Cooper, S. D., L. Barmuta, O. Sarnelle, K. Kratz & S. Diehl, 1997. Quantifying spatial heterogeneity in streams. Journal of the North American Benthological Society 16: 174–188.

    Article  Google Scholar 

  • Dalton, C. M. & A. S. Flecker, 2014. Metabolic stoichiometry and the ecology of fear in Trinidadian guppies: consequences for life histories and stream ecosystems. Oecologia 176: 1–11.

    Article  Google Scholar 

  • Fraker, M. E. & B. Luttbeg, 2012. Predator–prey space use and the spatial distribution of predation events. Behaviour 149: 555–574.

    Article  Google Scholar 

  • Gosner, K. L., 1960. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16: 183–190.

    Google Scholar 

  • Hammond, J. I., B. Luttbeg & A. Sih, 2007. Predator and prey use of space: dragonflies and tadpoles in an interactive game. Ecology 88: 1525–1535.

    Article  PubMed  Google Scholar 

  • Harvell, C. D., 1990. The ecology and evolution of inducible defenses. Quarterly Review of Biology 65: 323–340.

    Article  CAS  PubMed  Google Scholar 

  • Hettyey, A., K. Vincze, S. Zsarnóczai, H. Hoi & A. Laurila, 2011. Costs and benefits of defences induced by predators differing in dangerousness. Journal of Evolutionary Biology 24: 1007–1019.

    Article  CAS  PubMed  Google Scholar 

  • Lass, S. & P. Spaak, 2003. Chemically induced anti-predator defences in plankton: a review. Hydrobiologia 491: 221–239.

    Article  Google Scholar 

  • Laurila, A., J. Kujasalo & E. Ranta, 1997. Different antipredator behaviour in two anuran tadpoles: effects of predator diet. Behavioral Ecology and Sociobiology 40: 329–336.

    Article  Google Scholar 

  • Lima, S. L., 1998. Nonlethal effects in the ecology of predator–prey interactions. Bioscience 48: 25–34.

    Article  Google Scholar 

  • Lima, S. L. & L. M. Dill, 1990. Behavioral decisions made under the risk of predation: a review and prospectus. Canadian Journal of Zoology 68: 619–640.

    Article  Google Scholar 

  • Lovvorn, J. R. & M. P. Gillingham, 1996. Food dispersion and foraging energetics: a mechanistic synthesis for field studies of avian benthivores. Ecology 77: 435–451.

  • McCollum, S. A. & J. Van Buskirk, 1996. Costs and benefits of a predator-induced polyphenism in the gray treefrog Hyla chrysoscelis. Evolution 50: 583.

    Article  Google Scholar 

  • McCollum, S. A. & J. D. Leimberger, 1997. Predator-induced morphological changes in an amphibian: predation by dragonflies affects tadpole shape and color. Oecologia 109: 615–621.

    Article  Google Scholar 

  • Middlemis, Maher. J., E. E. Werner & R. J. Denver, 2013. Stress hormones mediate predator-induced phenotypic plasticity in amphibian tadpoles. Proceedings of the Royal Society of London Series B 280: 20123075.

    Article  Google Scholar 

  • Miner, B. G., S. E. Sultan, S. G. Morgan, D. K. Padilla & R. A. Relyea, 2005. Ecological consequences of phenotypic plasticity. Trends in Ecology & Evolution 20: 685–692.

    Article  Google Scholar 

  • Peacor, S. D., 2002. Positive effect of predators on prey growth rate through induced modifications of prey behaviour. Ecology Letters 5: 77–85.

    Article  Google Scholar 

  • Relyea, R. A. & J. R. Auld, 2004. Having the guts to compete: how intestinal plasticity explains costs of inducible defences. Ecology Letters 7: 869–875.

    Article  Google Scholar 

  • Richter-Boix, A., G. A. Llorente & A. Montori, 2007. A comparative study of predator-induced phenotype in tadpoles across a pond permanency gradient. Hydrobiologia 583: 43–56.

    Article  Google Scholar 

  • Roberts, D., 2014. Rapid habituation by mosquito larvae to predator kairomones. Journal of Vector Ecology 39: 1–6.

    Article  Google Scholar 

  • Skelly, D. K. & E. E. Werner, 1990. Behavioral and life-historical responses of larval American toads to an odonate predator. Ecology 71: 2313–2322.

    Article  Google Scholar 

  • Slos, S. & R. Stoks, 2008. Predation risk induces stress proteins and reduces antioxidant defense. Functional Ecology 22: 637–642.

    Article  Google Scholar 

  • Steiner, U. K. & T. Pfeiffer, 2007. Optimizing time and resource allocation trade-offs for investment into morphological and behavioral defense. The American Naturalist 169: 118–129.

    Article  PubMed  Google Scholar 

  • Steiner, U. K. & J. Van Buskirk, 2009. Predator-induced changes in metabolism cannot explain the growth/predation risk tradeoff. PLoS One 4: e6160.

    Article  PubMed Central  PubMed  Google Scholar 

  • Stein, R. A. & J. J. Magnuson, 1976. Behavioral response of crayfish to a fish predator. Ecology 57: 751–761.

    Article  Google Scholar 

  • Van Buskirk, J., 2000. The costs of an inducible defense in anuran larvae. Ecology 81: 2813–2821.

    Article  Google Scholar 

  • Yin, M., C. Laforsch, J. N. Lohr & J. Wolinska, 2011. Predator-induced defense makes Daphnia more vulnerable to parasites. Evolution 65: 1482–1488.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The author wishes to acknowledge helpful comments from the two anonymous reviewers and the editor for greatly improving the manuscript. The study was supported by an internal grant from Sultan Qaboos University. All experiments complied with the ethical guidelines of Sultan Qaboos University Animal Ethics Committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Barry.

Additional information

Handling editor: Lee B. Kats

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 143 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barry, M.J. Effects of resource distribution on the cost of predator avoidance behaviour in tadpoles. Hydrobiologia 758, 99–105 (2015). https://doi.org/10.1007/s10750-015-2276-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2276-3

Keywords

Navigation