, Volume 764, Issue 1, pp 29–50 | Cite as

A chronicle of a killer alga in the west: ecology, assessment, and management of Prymnesium parvum blooms

  • Daniel L. RoelkeEmail author
  • Aaron Barkoh
  • Bryan W. Brooks
  • James P. Grover
  • K. David Hambright
  • John W. LaClaireII
  • Peter D. R. Moeller
  • Reynaldo Patino


Since the mid-1980s, fish-killing blooms of Prymnesium parvum spread throughout the USA. In the south central USA, P. parvum blooms have commonly spanned hundreds of kilometers. There is much evidence that physiological stress brought on by inorganic nutrient limitation enhances toxicity. Other factors influence toxin production as well, such as stress experienced at low salinity and temperature. A better understanding of toxin production by P. parvum remains elusive and the identities and functions of chemicals produced are unclear. This limits our understanding of factors that facilitated the spread of P. parvum blooms. In the south central USA, not only is there evidence that the spread of blooms was controlled, in part, by migration limitation. But there are also observations that suggest changed environmental conditions, primarily salinity, facilitated the spread of blooms. Other factors that might have played a role include altered hydrology and nutrient loading. Changes in water hardness, herbicide use, system pH, and the presence of toxin-resistant and/or P. parvum-inhibiting plankton may also have played a role. Management of P. parvum in natural systems has yet to be attempted, but may be guided by successes achieved in small impoundments and mesocosm experiments that employed various chemical and hydraulic control approaches.


Prymnesium parvum Harmful algal bloom Geographic spread 



These sorts of unfunded writing projects actually do require funding, and the co-authors are grateful to their institutes for the indirect support received as part of their position responsibilities. Those institutes are Texas A&M University, Texas Parks and Wildlife Department, Baylor University, University of Texas at Arlington, University of Oklahoma, University of Texas at Austin, National Centers for Coastal Ocean Science, and Texas Cooperative Fish and Wildlife Research Unit (which is jointly supported by U.S. Geological Survey, Texas Tech University, Texas Parks and Wildlife Department, The Wildlife Management Institute, and U.S. Fish and Wildlife Service).


  1. Almeida-Paz, F. A., P. J. Gates, S. Fowler, A. Gallimore, B. Harvey, N. P. Lopes, J. Stark, C. B. W. Staunton, J. Klinowski & J. B. Spencer, 2003. Sodium monensin dehydrate. Acta Crystallography 59: 1050–1052.Google Scholar
  2. Ankley, G. T., R. S. Bennett, R. J. Erickson, D. J. Hoff, M. W. Hornugn, R. D. Johnson, D. R. Mount, J. W. Nichols, C. L. Russom, P. K. Schmieder, J. A. Serrano, J. E. Tietge & D. L. Villeneuve, 2010. Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environmental Toxicology and Chemistry 29: 730–741.PubMedCrossRefGoogle Scholar
  3. Baas-Becking, L. G. M., 1943. Geobiologie of Inleiding Tot de Milieukunde. Van Stockkum & Zoon, The Hague.Google Scholar
  4. Baker, J. W., J. P. Grover, B. W. Brooks, F. Ureña-Boeck, D. L. Roelke, R. M. Errera & R. Kiesling, 2007. Growth and toxicity of Prymnesium parvum (Haptophyta) as a function of salinity, light and temperature. Journal of Phycology 43: 219–227.CrossRefGoogle Scholar
  5. Baker, J. W., J. P. Grover, R. Ramachandrannair, C. Black, T. W. Valenti Jr, B. W. Brooks & D. L. Roelke, 2009. Growth at the edge of the niche: an experimental study of the harmful alga Prymnesium parvum. Limnology and Oceanography 54: 1679–1687.CrossRefGoogle Scholar
  6. Barkoh, A., D. G. Smith & J. W. Schlechte, 2003. An effective minimum concentration of un-ionized ammonia nitrogen for controlling Prymnesium parvum. North American Journal of Aquaculture 65: 220–225.CrossRefGoogle Scholar
  7. Barkoh, A. & L. T. Fries (eds), 2005. Management of Prymnesium parvum at Texas State Fish Hatcheries. Management Data Series 236. Texas Parks and Wildlife Department, Austin.Google Scholar
  8. Barkoh, A., D. G. Smith & G. M. Southard, 2010. Prymnesium parvum control treatments for fish hatcheries. Journal of the American Water Resources Association 46: 161–169.CrossRefGoogle Scholar
  9. Barone, R., G. Castelli & L. Naselli-Flores, 2010. Red sky at night cyanobacteria delight: the role of climate in structuring phytoplankton assemblage in a shallow, Mediterranean lake (Biviere di Gela, southeastern Sicily). Hydrobiologia 639: 43–53.CrossRefGoogle Scholar
  10. Barreiro, A., C. Guisande, I. Maneiro, T. P. Lien, C. Legrand, T. Tamminen, S. Lehtinen, P. Uronen & E. Granéli, 2005. Relative importance of the different negative effects of the toxic haptophyte Prymnesium parvum on Rhodomonas salina and Brachionus plicatilis. Aquatic Microbial Ecology 38: 259–267.CrossRefGoogle Scholar
  11. Beijerinck, M. W., 1913. De infusies en de ontdekking der backteriën. In Jaarboek van de KoninklijkeAkademie van Wetenschappen. Muller, Amsterdam.Google Scholar
  12. Bertin, M. J., P. V. Zimba, K. R. Beauchesne, K. M. Huncik & P. D. Moeller, 2012a. The contribution of fatty acid amides to Prymnesium parvum Carter toxicity. Harmful Algae 20: 117–125.CrossRefGoogle Scholar
  13. Bertin, M. J., P. V. Zimba, K. R. Beauchesne, K. M. Huncik & P. D. Moeller, 2012b. Identification of toxic fatty acid amides isolated from the harmful alga Prymnesium parvum Carter. Harmful Algae 20: 111–116.CrossRefGoogle Scholar
  14. Bertin, M. J., D. C. Voronca, R. W. Chapman & P. D. Moeller, 2014. The effect of pH on the toxicity of fatty acids and fatty acid amides to rainbow trout gill cells. Aquatic Toxicology 146: 1–11.PubMedCrossRefGoogle Scholar
  15. Beszteri, S., I. Yang, N. Jaeckisch, U. Tillmann, S. Frickenhaus, G. Glöckner, A. Cembella & U. John, 2012. Transcriptomic response of the toxic prymnesiophyte Prymnesium parvum (N. Carter) to phosphorus and nitrogen starvation. Harmful Algae 18: 1–15.CrossRefGoogle Scholar
  16. Blossom, H. E., N. G. Andersen, S. A. Rasmussen & P. J. Hansen, 2014a. Stability of the intra- and extracellular toxins of Prymnesium parvum using a microalgal bioassay. Harmful Algae 32: 11–21.CrossRefGoogle Scholar
  17. Blossom, H. E., S. A. Rasmussen, N. G. Andersen, T. O. Larsen, K. F. Nielsen & P. J. Hansen, 2014b. Prymnesium parvum revisited: relationship between allelopathy, ichthyotoxicity, and chemical profiles in 5 strains. Aquatic Toxicology. doi: 10.1016/j.aquatox.2014.10.006.PubMedGoogle Scholar
  18. Brooks, B. W., S. V. James, T. W. Valenti Jr, F. Urena-Boeck, C. Serrano, J. P. Berninger, L. Schwierzke, L. D. Mydlarz, J. P. Grover & D. L. Roelke, 2010. Comparative toxicity of Prymnesium parvum in inland waters. Journal of American Water Resources Association 46: 45–62.CrossRefGoogle Scholar
  19. Brooks, B. W., J. P. Grover & D. L. Roelke, 2011. Prymnesium parvum, an emerging threat to inland waters. Environmental Toxicology and Chemistry 30: 1955–1964.PubMedCrossRefGoogle Scholar
  20. Brussaard, C. P. D., B. Kuipers & M. J. W. Veldhuis, 2005. A mesocosm study of Phaeocystis globosa population dynamics I. Regulatory role of viruses in bloom control. Harmful Algae 4: 859–874.CrossRefGoogle Scholar
  21. Burkholder, J. M., 1998. Implications of harmful microalgae and heterotrophic dinoflagellates in management of sustainable marine fisheries. Ecological Applications 8: 37–62.CrossRefGoogle Scholar
  22. Cichewicz, R. H. & K. D. Hambright, 2010. A revised amino group pK a for prymnesins does not provide decisive evidence for a pH-dependent mechanism of Prymnesium parvum’s toxicity. Toxicon 55: 1035–1037.PubMedCrossRefGoogle Scholar
  23. Croft, M. T., A. D. Lawrence, E. Raux-Deery, M. J. Warren & A. G. Smith, 2005. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438: 90–93.PubMedCrossRefGoogle Scholar
  24. Croft, M. T., M. J. Warren & A. G. Smith, 2006. Algae need their vitamins. Eukaryotic Cell 5: 1175–1183.PubMedCentralPubMedCrossRefGoogle Scholar
  25. Dafni, Z., S. Ulitzur & M. Shilo, 1972. Influence of light and phosphate on toxin production and growth of Prymnesium parvum. Journal of General Microbiology 70: 199–207.CrossRefGoogle Scholar
  26. Daniel, T. C., A. N. Sharpley & J. L. Lemunyon, 1998. Agricultural phosphorus and eutrophication: a symposium overview. Jouranl of Environmental Quality 27: 251–257.CrossRefGoogle Scholar
  27. Davis, S. L., D. L. Roelke, B. W. Brooks, V. M. Lundgren, F. Withrow & W. C. Scott, 2015. Rotifer-Prymnesium parvum interactions: the role of lake bloom history. Aquatic Microbial Ecology. Accepted.Google Scholar
  28. Dawson, D., M. M. VanLandeghem, W. H. Asquith & R. Patiño. Long-term trends in reservoir water quality and quantity in two major river basins of the southern Great Plains, USA. Lake and Reservoir Management. In Review.Google Scholar
  29. deNoyelles, F., W. D. Kettle & D. E. Sinn, 1982. The responses of plankton communities in experimental ponds to atrazine, the most heavily used pesticide in the United States. Ecology 63: 1285–1293.CrossRefGoogle Scholar
  30. Doucette, G. J., E. R. McGovern & J. A. Babinchak, 1999. Algicidal bacteria active against Gymnodiniumbreve (Dinophyceae). I. Bacterial isolation and characterization of killing activity. Journal of Phycology 35: 1447–1454.CrossRefGoogle Scholar
  31. Droop, M. R., 1973. Some thoughts on nutrient limitation in algae. Journal of Phycology 9: 264–272.Google Scholar
  32. Droop, M. R., 1983. 25 years of algal growth kinetics: a personal review. Botanica Marina 26: 99–112.CrossRefGoogle Scholar
  33. Dugdale, R. C., 1967. Nutrient limitation in the sea: dynamics, identification, and significance. Limnology and Oceanography 12: 685–695.CrossRefGoogle Scholar
  34. Edvardsen, B. & E. Paasche, 1998. Bloom dynamics and physiology of Prymnesium and Chrysochromulina. In Anderson, D. M., A. D. Cembella & G. M. Hallegraff (eds), The Physiological Ecology of Harmful Algal Blooms. Springer, Heidelberg: 193–208.Google Scholar
  35. Errera, R. M., D. L. Roelke, R. Kiesling, B. W. Brooks, J. P. Grover, L. Schwierzke, F. Ureña-Boeck, J. W. Baker & J. L. Pinckney, 2008. The effect of imbalanced nutrients and immigration on Prymnesium parvum community dominance and toxicity: results from in-lake microcosm experiments, Texas, USA. Aquatic Microbial Ecology 52: 33–44.CrossRefGoogle Scholar
  36. Fistarol, G. O., C. Legrand & E. Granéli, 2003. Allelopathic effect of Prymnesium parvum on a natural plankton community. Marine Ecology Progress Series 255: 115–125.CrossRefGoogle Scholar
  37. Fistarol, G. O., C. Legrand & E. Granéli, 2005. Allelopathic effect on a nutrient-limited phytoplankton species. Aquatic Microbial Ecology 41: 153–161.CrossRefGoogle Scholar
  38. Fu, X. F., A. O. Tatters & D. A. Hutchins, 2012. Global change and the future of harmful algal blooms in the ocean. Marine Ecology Progress Series 470: 207–233.CrossRefGoogle Scholar
  39. Gavis, J., 1976. Munk and Riley revisited: nutrient diffusion transport and rates of phytoplankton growth. Journal of Marine Research 34: 161–179.Google Scholar
  40. Genitsaris, S., K. A. Kormas & M. Moustaka-Gouni, 2009. Microscopic eukaryotes living in a dying lake (Lake Koronia, Greece). FEMS Microbiology Ecology 69: 75–83.PubMedCrossRefGoogle Scholar
  41. Granéli, E., 2006. Kill your enemies and eat them with the help of your toxins: an algal strategy. African Journal of Marine Science 28: 331–336.CrossRefGoogle Scholar
  42. Granéli, E. & N. Johansson, 2003a. Effects of the toxic haptophyte Prymnesium parvum on the survival and feeding of a ciliate: the influence of different nutrient conditions. Marine Ecology Progress Series 254: 49–56.CrossRefGoogle Scholar
  43. Granéli, E. & N. Johansson, 2003b. Increase in the production of allelopathic substances by Prymnesium parvum cells grown under N- or P-deficient conditions. Harmful Algae 2: 135–145.CrossRefGoogle Scholar
  44. Granéli, E. & P. J. Hansen, 2006. Allelopathy in harmful algae: a mechanism to compete for resources? In Granéli, E. & J. T. Turner (eds), Ecology of Harmful Algae, Ecological Studies, Vol. 189. Springer, Berlin: 189–201.CrossRefGoogle Scholar
  45. Granéli, E. & P. S. Salomon, 2010. Factors influencing allelopathy and toxicity in Prymnesium parvum. Journal of the American Water Resources Association 46: 108–120.CrossRefGoogle Scholar
  46. Granéli, E., B. Edvardsen, D. L. Roelke & J. A. Hagström, 2012. The ecophysiology and bloom dynamics of Prymnesium spp. Harmful Algae 14: 260–270.CrossRefGoogle Scholar
  47. Green, J. C., D. J. Hibberd & R. N. Pienaar, 1982. The taxonomy of Prymnesium (Prymnesiophyceae) including a description of a new cosmopolitan species, P. patellifera sp. nov., and further observations on P. parvum N. Carter. Journal of the British Phycological Society 17: 363–382.CrossRefGoogle Scholar
  48. Ground, T. A. & A. W. Groeger, 1994. Chemical classification and trophic characteristics of Texas reservoirs. Lake and Reservoir Management 10: 189–201.CrossRefGoogle Scholar
  49. Grover, J. P., 1989. Phosphorus-dependent growth kinetics of 11 species of freshwater algae. Limnology and Oceanography 34: 341–348.CrossRefGoogle Scholar
  50. Grover, J. P. & F.-B. Wang, 2013. Dynamics of a model of microbial competition with internal nutrient storage in a flowing habitat. Applied Mathematics and Computation 225: 747–764.CrossRefGoogle Scholar
  51. Grover, J. P. & F.-B. Wang, 2014. Competition and allelopathy with resource storage: two resources. Journal of Theoretical Biology 351: 9–24.PubMedCrossRefGoogle Scholar
  52. Grover, J. P., R. W. Sterner & J. L. Robinson, 1999. Algal growth in warm temperate reservoirs: nutrient-dependent kinetics of individual taxa and seasonal patterns of dominance. Archiv für Hydrobiologie 145: 1–23.Google Scholar
  53. Grover, J. P., H. S. B. Hsu & F. B. Wang, 2009. Competition and coexistence in flowing habitats with a hydraulic storage zone. Mathematical Biosciences 222: 42–52.PubMedCrossRefGoogle Scholar
  54. Grover, J. P., J. W. Baker, D. L. Roelke & B. W. Brooks, 2010. Mathematical models of population dynamics of Prymnesium parvum in inland waters. Journal of American Water Resources Association 46: 92–107.CrossRefGoogle Scholar
  55. Grover, J. P., K. W. Crane, J. W. Baker, B. W. Brooks & D. L. Roelke, 2011. Spatial variation of harmful algae and their toxins in flowing-water habitats: a theoretical exploration. Journal of Plankton Research 33: 211–228.CrossRefGoogle Scholar
  56. Grover, J. P., D. L. Roelke & B. W. Brooks, 2012. Modeling of plankton community dynamics characterized by algal toxicity and allelopathy: a focus on historical Prymnesium parvum blooms in a Texas reservoir. Ecological Modelling 227: 147–161.CrossRefGoogle Scholar
  57. Grover, J. P., D. L. Roelke, B. W. Brooks, G. M. Gable, M. T. Neisch, N. J. Hayden, T. W. Valenti Jr, K. N. Prosser, G. D. Umphres & N. C. Hewitt, 2013. Ammonium treatments to suppress toxic blooms of Prymnesium parvum in a subtropical lake of semi-arid climate: results from in situ mesocosm experiments. Water Research 47: 4274–4285.PubMedCrossRefGoogle Scholar
  58. Guo, W., 1983. The reason for the fish death at aquacultural experimental station at Ningxia and the distribution of Prymnesium parvum in Ningxia. Jouranl of the Dalian Fisheries College 1: 43–48. (in Chinese).Google Scholar
  59. Guo, M., P. J. Harrison & F. J. R. Taylor, 1996. Fish kills related to Prymnesium parvum N. Carter (Haptophyta) in the People’s Republic of China. Jouranl of Applied Phycology 8: 111–117.CrossRefGoogle Scholar
  60. Hallegraeff, G. M., 1993. A review of harmful algal blooms and their apparent global increase. Phycologia 32: 79–99.CrossRefGoogle Scholar
  61. Hambright, K. D., R. M. Zamor, J. D. Easton, K. L. Glenn, E. J. Remmel & A. C. Easton, 2010. Temporal and spatial variability of an invasive toxigenic protist in a North American subtropical reservoir. Harmful Algae 9: 568–577.CrossRefGoogle Scholar
  62. Hambright, K. D., 2012. Golden algae and the health of Oklahoma Lakes. Lakeline Fall issue: 33–38.Google Scholar
  63. Hambright, K. D., J. D. Easton, R. M. Zamor, J. Beyer, A. C. Easton & B. Allison, 2014. Regulation of growth and toxicity of a mixotrophic microbe: implications for understanding range expansion in Prymnesium parvum. Freshwater Science 33: 745–754.CrossRefGoogle Scholar
  64. Hambright, K. D., J. E. Beyer, J. D. Easton, R. M. Zamor, A. C. Easton & T. C. Hallidayschult, 2015. The niche of an invasive marine microbe in a subtropical freshwater impoundment. ISME Journal 9: 256–264.PubMedCrossRefGoogle Scholar
  65. Hansen, B., P. K. Bjornsen & P. J. Hansen, 1994. The size ratio between planktonic predators and their prey. Limnology and Oceanography 39: 395–403.CrossRefGoogle Scholar
  66. Harris, C. A., A. P. Scott, A. C. Johnson, G. H. Panter, D. Sheahan, M. Roberts & J. P. Sumpter, 2014. Principles of sound ecotoxicology. Environmental Science and Technology 46: 3100–3111.CrossRefGoogle Scholar
  67. Hayden, N. J., D. L. Roelke, B. W. Brooks, J. P. Grover, M. T. Neisch, T. W. Valenti Jr, K. N. Prosser, G. M. Gable, G. D. Umphres & N. C. Hewitt, 2012. Beyond hydraulic flushing: deep water mixing takes the harm out of a haptophyte bloom. Harmful Algae 20: 42–57.CrossRefGoogle Scholar
  68. Henrikson, J. C., M. S. Gharfeh, A. C. Easton, J. D. Easton, K. L. Glenn, M. Shadfan, S. L. Mooberry, K. D. Hambright & R. H. Cichewicz, 2010. Reassessing the ichthyotoxin profile of cultured Prymnesium parvum (golden algae) and comparing it to samples collected from recent freshwater bloom and fish kill events in North America. Toxicon 55: 1396–1404.PubMedCrossRefGoogle Scholar
  69. Hughes-Martiny, J. B., B. J. M. Bohannan, J. H. Brown, R. K. Colwell, J. A. Fuhrman, J. L. Green, M. C. Horner-Devine, M. Kane, J. A. Krumins, C. R. Kuske, P. J. Morin, S. Naeem, L. Øvreås, A. L. Reysenbach, V. H. Smith & J. T. Staley, 2006. Microbial biogeography: putting microorganisms on the map. Nature 4: 102–112.Google Scholar
  70. Igarashi, T., M. Satake & T. Yasumoto, 1996. Prymnesin-2: a potent ichthyotoxic and hemolytic glycoside isolated from the red alga Prymnesium parvum. Journal of the American Chemical Society 118: 479–480.CrossRefGoogle Scholar
  71. Igarashi, T., M. Satake & T. Yasumoto, 1999. Structures and partial stereochemical assignments for prymnesin-1 and prymnesin-2: potent ichthyotoxic and hemolytic glycosides isolated from the red alga Prymnesium parvum. Journal of the American Chemical Society 121: 8499–8511.CrossRefGoogle Scholar
  72. Israel, N. M. D., M. N. VanLandeghem, S. D. Denny, J. Ingle & R. Patiño, 2014. Golden alga presence and abundance are inversely related to salinity in a high-salinity river ecosystem, Pecos River, USA. Harmful Algae 39: 81–91.CrossRefGoogle Scholar
  73. James, T. & A. De La Cruz, 1989. Prymnesium parvum Carter (Chrysophyceae) as a suspect of mass mortalities of fish and shellfish communities in western Texas. Texas Journal of Science 41: 429–430.Google Scholar
  74. James, S. V., T. W. Valenti, K. N. Prosser, J. P. Grover, D. L. Roelke & B. W. Brooks, 2011a. Sunlight amelioration of Prymnesium parvum acute toxicity to fish. Journal of Plankton Research 33: 265–272.CrossRefGoogle Scholar
  75. James, S. V., T. W. Valenti, D. L. Roelke, J. P. Grover & B. W. Brooks, 2011b. Probabilistic ecological assessment of microcystin-LR: a case study of allelopathy to Prymnesium parvum. Journal of Plankton Research 33: 319–332.CrossRefGoogle Scholar
  76. Johansson, N. & E. Granéli, 1999. Influence of different nutrient conditions on cell density, chemical composition and toxicity of Prymnesium parvum (Haptophyta) in semi-continuous cultures. Journal of Experimental and Marine Biology and Ecology 239: 243–258.CrossRefGoogle Scholar
  77. Johnsen, T. M., W. Eikrem, C. D. Olseng, K. E. Tollefsen & V. Bjerknes, 2010. Prymnesium parvum: the Norwegian experience. Journal of the American Water Resources Association 46: 6–13.CrossRefGoogle Scholar
  78. Jones, A. C., T. S. V. Liao, F. Z. Najar, B. A. Roe, K. D. Hambright & D. A. Caron, 2013. Seasonality and disturbance: annual pattern and response of the bacterial and microbial eukaryotic assemblages in a freshwater ecosystem. Environmental Microbiology 15: 2557–2572.PubMedCrossRefGoogle Scholar
  79. Jonsson, P. R., H. Pacvia & G. Toth, 2009. Formation of harmful algal blooms cannot be explained by allelopathic interactions. Proceedings of the National Academy of Sciences 106: 11177–11182.CrossRefGoogle Scholar
  80. Kawachi, M., I. Inouye, O. Maeda & M. Chihara, 1991. The haptonema as a food-capturing device – observations on Chrysochromulinahirta (Prymnesiophyceae). Phycologia 30: 563–573.CrossRefGoogle Scholar
  81. Karp-Boss, L., E. Boss & P. A. Jumars, 1996. Nutrient fluxes to planktonic osmotrophs in the presence of fluid motion. Oceanography and Marine Biology: An Annual Review 34: 71–107.Google Scholar
  82. Katsiapi, M., P. Polykarpou, E. Michaloudi, K. A. Kormas, H. Karayanni & M. Moustaka-Gouni, 2014. Prymnesium parvum: invading the Mediterranean inland waters. Hydrobiologia In Review (this issue).Google Scholar
  83. Kiely, T., D. Donaldson & A. Grube, 2004. Pesticides Industry Sales and Usage 2000 and 2001 Market Estimates. U.S. Environmental Protection Agency Technical Report: 48 pp.Google Scholar
  84. Kimmel, B. L. & A. W. Groeger, 1984. Factors controlling primary production in lakes and reservoirs: a perspective. Lake and Reservoir Management 1: 277–281.CrossRefGoogle Scholar
  85. Koid, A. E., Z. Liu, R. Terrado, A. C. Jones, D. A. Caron & K. B. Heidelberg, 2014. Comparative transcriptome analysis of four prymnesiophyte algae. PLoS One 9: e97801.PubMedCentralPubMedCrossRefGoogle Scholar
  86. Koski, M., M. Rosenberg, M. Viitasalo, S. Tanskanen & U. Sjolund, 1999. Is Prymnesium patelliferum toxic for copepods? Grazing, egg production, and egestion of the calanoid copepod Eurytemoraaffinis in mixtures of “good” and “bad” food. ICES Journal of Marine Science 56: 131–139.CrossRefGoogle Scholar
  87. Kurten, G. L., A. Barkoh, L. T. Fries & D. C. Begley, 2007. Combined nitrogen and phosphorus fertilization for controlling the toxigenic alga Prymnesium parvum. North American Journal of Aquaculture 69: 214–222.CrossRefGoogle Scholar
  88. Kurten, G. L., A. Barkoh, D. C. Begley & L. T. Fries, 2010. Refining nitrogen and phosphorus fertilization strategies for controlling the toxigenic alga Prymnesium parvum. Journal of the American Water Resources Association 46: 170–186.CrossRefGoogle Scholar
  89. Kurten, G. L., A. Barkoh, D. C. Begley & L. T. Fries, 2011. Nutrient manipulation to control the toxic alga Prymnesium parvum: verification of treatments and resolution of the issue of elevated pH. North American Journal of Aquaculture 73: 141–152.CrossRefGoogle Scholar
  90. La Claire II, J. W., 2006. Analysis of expressed sequence tags from the harmful alga, Prymnesuim parvum (Prymesiophyceae, Haptophyta). Marine Biotechnology 8: 534–546.CrossRefGoogle Scholar
  91. Lakshminarayana, J. S. S., H. J. O’Neill, S. D. Jonnavithula, D. A. Leger & P. H. Milburn, 1992. Impact of atrazine-bearing agricultural tile drainage discharge on planktonic drift of a natural stream. Environmental Pollution 76: 201–210.PubMedCrossRefGoogle Scholar
  92. Landsberg, J. H., 2002. The effects of harmful algal blooms on aquatic organisms. Reviews in Fisheries Science 10: 113–390.CrossRefGoogle Scholar
  93. Larsen, A., 1999. Prymnesium parvum and P. patelliferum (Haptophyta) – one species. Phycologia 38: 541–543.CrossRefGoogle Scholar
  94. Larsen, A. & S. Bryant, 1998. Growth rate and toxicity of Prymnesium parvum and Prymnesium patelliferum (Haptophyta) in response to changes in salinity, light and temperature. Sarsia 83: 409–418.Google Scholar
  95. Legrand, C., N. Johansson, G. Johnsen, K. Y. Borsheim & E. Granéli, 2001. Phagotrophy and toxicity variation in the mixotrophic Prymnesium patelliferum (Haptophyceae). Limnology and Oceanography 46: 1208–1214.CrossRefGoogle Scholar
  96. Legrand, C., K. Rengefors, G. O. Fistarol & E. Granéli, 2003. Allelopathy in phytoplankton – biochemical, ecological and evolutionary aspects. Phycologia 42: 406–419.CrossRefGoogle Scholar
  97. Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, R. D. Holt, J. B. Shurin, R. Law, D. Tilman, M. Loreau & A. Gonzalez, 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7: 601–613.CrossRefGoogle Scholar
  98. Lewis, W. M. J., 1986. Evolutionary interpretations of allelochemical interactions in phytoplankton algae. American Naturalist 127: 184–194.CrossRefGoogle Scholar
  99. Lundgren, V. M., D. L. Roelke, J. P. Grover, B. W. Brooks, K. N. Prosser, W. C. Scott, C. A. Laws & G. D. Umphres, 2013. Interplay between ambient surface water mixing and manipulated hydraulic flushing: implications for harmful algal bloom mitigation. Ecological Engineering 60: 289–298.CrossRefGoogle Scholar
  100. Lundgren, V. M., D. L. Roelke, B. W. Brooks, E. Granéli, S. L. Davis, T. Baty & W. C. Scott, 2015. Prymnesium parvum invasion success into coastal bays of the Gulf of Mexico: Galveston Bay case study. Harmful Algae 43: 31–45.CrossRefGoogle Scholar
  101. Lutz-Carrillo, D. J., G. M. Southard & L. T. Fries, 2010. Global genetic relationships among isolates of golden alga (Prymnesium parvum). Journal of the American Water Resources Association 46: 24–32.CrossRefGoogle Scholar
  102. Manning, S. R. & J. W. La Claire II, 2013. Isolation of polyketides from Prymnesium parvum (Haptophyta) and their detection by liquid chromatography/mass spectrometry metabolic fingerprint analysis. Analytical Biochemistry 442: 189–195.PubMedCrossRefGoogle Scholar
  103. Mariussen, E., G. N. Nelson & F. Fonnum, 2005. A toxic extract of the marine phytoflagellate Prymnesium parvum induces calcium-dependent release of glutamate from rate brain synaptasomes. Journal of Toxicology and Environmental Health Part A 68: 67–79.PubMedCrossRefGoogle Scholar
  104. McKnight, D. M., S. W. Chisholm & D. R. F. Harleman, 1983. CuSO4 treatment of nuisance algal blooms in drinking water reservoirs. Environmental Management 7: 311–320.CrossRefGoogle Scholar
  105. Michaloudi, E., M. Moustaka-Gouni, S. Gkelis & K. Pantelidakis, 2009. Plankton community structure during an ecosystem disruptive algal bloom of Prymnesium parvum. Journal of Plankton Research 31: 301–309.CrossRefGoogle Scholar
  106. Michaloudi, E., M. Moustaka-Gouni, K. Pantelidakis, M. Katsiapi & S. Genitsaris, 2012. Plankton succession in the temporary Lake Koronia after intermittent dry-out. Journal of Plankton Research 31: 301–309.CrossRefGoogle Scholar
  107. Mitchell, J. G., L. Seuront, M. J. Doubell, D. Losic, N. H. Voelcker, J. Seymour & R. Lal, 2013. The role of diatom nanostructures in biasing diffusion to improve uptake in a patchy nutrient environment. PLoS One 8: e59548.PubMedCentralPubMedCrossRefGoogle Scholar
  108. Moestrup, O., 1994. Economic aspects: blooms, nuisance species, and toxins. In Green, J. C. & B. S. C. Leadbeater (eds), The Haptophyte Algae. Systematics Association Special, Vol. 51. Clarendon Press, Oxford: 265–285.Google Scholar
  109. Moeller, P. D., K. R. Beauchesne, K. M. Huncik, W. C. Davis, S. J. Christopher, P. Riggs-Gelasco & A. K. Gelasco, 2007. Metal complexes and free radical toxins produced by Pfiesteria piscicida. Environmental Science and Technology 41: 1166–1172.PubMedCrossRefGoogle Scholar
  110. Monod, J., 1950. La technique de la culture continue: Theorie et applications. Annales d”Institut Pasteur, Lille 79: 390–410.Google Scholar
  111. Neisch, M. T., D. L. Roelke, B. W. Brooks, J. P. Grover & M. P. Masser, 2012. Stimulating effect of Anabaena sp. exudate on Prymnesium parvum. Journal of Phycology 48: 1045–1049.CrossRefGoogle Scholar
  112. Nejstgaard, J. C. & P. T. Solberg, 1996. Repression of copepod feeding and fecundity by the toxic haptophyte Prymnesium patelliferum. Sarsia 81: 339–344.Google Scholar
  113. Nelson, J. & M. Byrd, 2011. Occurrence of Prymnesium parvum (Golden Alga) in Texas intertidal waters 2008 and 2009. Management Data Series No. 264. Texas Parks and Wildlife Department: 26 pp.Google Scholar
  114. Oikonomou, A., M. Katsiapi, H. Karayanni, M. Moustaka-Gouni & K. A. Kormas, 2012. Plankton microorganisms coinciding with two consecutive mass fish kills in a newly reconstructed lake. The Scientific World Journal. doi: 10.1100/2012/504135.PubMedCentralPubMedGoogle Scholar
  115. Padilla, G. M., 1970. Growth and toxigenesis of the chrysomonad Prymnesium parvum as a function of salinity. Journal of Protozoology 17: 456–462.CrossRefGoogle Scholar
  116. Palenik, B. & F. M. M. Morel, 1991. Comparison of cell-surface L-amino acid oxidases from several marine phytoplankton. Marine Ecology-Progress Series 59: 195–201.CrossRefGoogle Scholar
  117. Patiño, R., D. Dawson & M. M. VanLandeghem, 2014. Retrospective analysis of associations between water quality and toxic blooms of golden alga (Prymnesium parvum) in Texas reservoirs: Implications for understanding dispersal mechanisms and impacts of climate change. Harmful Algae 33: 1–11.CrossRefGoogle Scholar
  118. Pflugmacher, S., 2002. Possible allelopathic effects of cyanotoxins, with reference to microcystin-LR, in aquatic ecosystems. Environmental Toxicology 17: 407–413.PubMedCrossRefGoogle Scholar
  119. Pienaar, R. N., 1980. Observations on the structure and composition of the cyst of Prymnesium (Prymnesiophyceae). Electron Microscopy Society of Southern Africa – Proceedings 10: 73–74.Google Scholar
  120. Prosser, K. N., T. W. Valenti Jr, N. J. Hayden, M. T. Neisch, N. Hewitt, G. D. Umphres, G. M. Gable, J. P. Grover, D. L. Roelke & B. W. Brooks, 2012. Low pH preempts bloom development of a toxic haptophyte. Harmful Algae 20: 156–164.CrossRefGoogle Scholar
  121. Remmel, E. J., N. Kohmescher, J. H. Larson & K. D. Hambright, 2011. An experimental analysis of harmful algae–zooplankton interactions and the ultimate defense. Limnology and Oceanography 56: 461–470.CrossRefGoogle Scholar
  122. Remmel, E. J. & K. D. Hambright, 2012. Toxin assisted micropredation: experimental evidence shows that contact micropredation rather than exotoxicity is the role of Prymnesium toxins. Ecology Letters 15: 126–132.PubMedCrossRefGoogle Scholar
  123. Rhodes, K. & C. Hubbs, 1992. Recovery of the Pecos River from a red tide fish kill. Southwestern Naturalist 37: 178–187.CrossRefGoogle Scholar
  124. Roelke, D. L., R. Errera, R. Kiesling, B. W. Brooks, J. P. Grover, L. Schwierzke, F. Ureña-Boeck, J. Baker & J. L. Pinckney, 2007. Effects of nutrient enrichment on Prymnesium parvum population dynamics and toxicity: results from field experiments, Lake Possum Kingdom, USA. Aquatic Microbial Ecology 46: 125–140.CrossRefGoogle Scholar
  125. Roelke, D. L., G. M. Gable, T. W. Valenti, J. P. Grover, B. W. Brooks & J. L. Pinckney, 2010a. Hydraulic flushing as a Prymnesium parvum bloom-terminating mechanism in a subtropical lake. Harmful Algae 9: 323–332.CrossRefGoogle Scholar
  126. Roelke, D. L., L. Schwierzke, B. W. Brooks, J. P. Grover, R. M. Errera, T. W. Valenti Jr & J. L. Pinckney, 2010b. Factors influencing Prymnesium parvum population dynamics during bloom formation: results from in-lake mesocosm experiments. Journal of the American Water Resources Association 46: 76–91.CrossRefGoogle Scholar
  127. Roelke, D. L., J. P. Grover, B. W. Brooks, J. Glass, D. Buzan, G. M. Southard, L. Fries, G. M. Gable, L. Schwierzke-Wade, M. Byrd & J. Nelson, 2011. A decade of fish-killing Prymnesium parvum blooms in Texas: roles of inflow and salinity. Journal of Plankton Research 33: 243–254.CrossRefGoogle Scholar
  128. Roelke, D. L., B. W. Brooks, J. P. Grover, G. M. Gable, L. Schwierzke-Wade & N. C. Hewitt, 2012. Anticipated human population and climate change effects on algal blooms of a toxic haptophyte in the south-central USA. Canadian Journal of Fisheries and Aquatic Sciences 69: 1389–1404.CrossRefGoogle Scholar
  129. Roelke, D. L., H.-P. Li, N. J. Hayden, C. J. Miller, S. E. Davis, A. Quigg & Y. Buyukates, 2013. Co-occurring and opposing freshwater inflow effects on phytoplankton biomass, productivity and community composition of Galveston Bay, USA. Marine Ecology Progress Series 477: 61–76.CrossRefGoogle Scholar
  130. Rosetta, C. H. & G. B. McManus, 2003. Feeding by ciliates on two harmful algal bloom species, Prymnesium parvum and Prorocentrum minimum. Harmful Algae 2: 109–126.CrossRefGoogle Scholar
  131. Sager, A. Barkoh, D. L. Buzan, L. Fries, J. Glass, G. Kurten, J. Ralph, L. Singhurst, G. Southard & L. Riley, 2008. Toxic Prymnesium parvum: a potential threat to U.S. Reservoirs. In Allen, M. S., S. Sammons & M. J. Maccina (eds), Balancing Fisheries Management and Water Uses for Impounded River Systems. American Fisheries Society, Bethesda, MD: 261–273.Google Scholar
  132. Schwierzke, L., D. L. Roelke, B. W. Brooks, J. P. Grover, T. W. Valenti Jr, M. Lahousse, C. J. Miller & J. L. Pinckney, 2010. Prymnesium parvum population dynamics during bloom development: a role assessment of grazers and virus. Journal of American Water Resources Association 46: 63–75.CrossRefGoogle Scholar
  133. Schwierzke-Wade, L., D. L. Roelke, B. W. Brooks, J. P. Grover & T. W. ValentiJr, 2011. Prymnesium parvum bloom termination: role of hydraulic dilution. Journal of Plankton Research 33: 309–318.CrossRefGoogle Scholar
  134. Shilo, M., 1967. Formation and mode of action of algal toxins. Bacteriological Reviews 31: 180–193.PubMedCentralPubMedGoogle Scholar
  135. Shilo, M. & M. Aschner, 1953. Factors governing the toxicity of cultures containing the phytoflagellate Prymnesium parvum Carter. Journal of General Microbiology 8: 333–343.PubMedCrossRefGoogle Scholar
  136. Skingel, T. R., S. E. Spencer, C. Q. Le 1, C. A. Serrano, L. D. Mydlarz, B. J. Scarbrough, K. A. Schug, B. W. Brooks & J. P. Grover, 2010. Hemolytic toxicity and nutritional status of Prymnesium parvum during population growth. Aquatic Microbial Ecology 61: 141–148.CrossRefGoogle Scholar
  137. Skovgaard, A. & P. J. Hansen, 2003. Food uptake in the harmful alga Prymnesium parvum mediated by excreted toxins. Limnology and Oceanography 48: 1161–1166.CrossRefGoogle Scholar
  138. Smayda, T. J., 1990. Novel and nuisance phytoplankton blooms in the sea: evidence for a global epidemic. In Granéli, E. (ed.), Toxic Marine Phytoplankton. Elsevier, New York: 29–40.Google Scholar
  139. Sopanen, S., M. Koski, P. Kuuppo, P. Uronen, C. Legrand & T. Tamminen, 2006. Toxic haptophyte Prymnesium parvum affects grazing, survival, egestion and egg production of the calanoid copepods Eurytemora affinis and Acartia bifilosa. Marine Ecology Progress Series 327: 223–232.CrossRefGoogle Scholar
  140. Southard, G. M., L. T. Fries & A. Barkoh, 2010. Prymnesium parvum: the Texas experience. Journal of the American Water Resources Association 46: 14–23.CrossRefGoogle Scholar
  141. Sterner, R. W., 1989. The role of grazers in phytoplankton succession. In Sommer, U. (ed.), Plankton Ecology. Springer, Berlin: 107–170.CrossRefGoogle Scholar
  142. Talarski, A. E., 2014. Genetic basis for ichthyotoxicity and osmoregulation in the euryhaline haptophyte, Prymnesium parvum N. Carter. Ph.D. Dissertation, University of Texas at Austin: 141 pp.Google Scholar
  143. Texas Water Development Board (TWDB), 2012. Water for Texas 2012 State Water Plan: 314 pp.
  144. Texas Parks & Wildlife Department (TPWD), 2003. Prymnesium parvum, Workshop Report, Austin, TX.
  145. Tillmann, U., 2003. Kill and eat your predator: a winning strategy of the planktonic flagellate Prymnesium parvum. Aquatic Microbial Ecology 32: 73–84.CrossRefGoogle Scholar
  146. Ulitzur, S. & M. Shilo, 1964. A sensitive assay system for determination of the ichthyotoxicity of Prymnesium parvum. Journal of General Microbiology 36: 161–169.PubMedCrossRefGoogle Scholar
  147. Ulitzur, S. & M. Shilo, 1966. Mode of action of Prymnesium parvumi chthyotoxin. Journal of Protozoology 13: 332–336.CrossRefGoogle Scholar
  148. Umphres IV, G. D., D. L. Roelke & M. D. Netherland, 2012. A chemical approach for the mitigation of Prymnesium parvum blooms. Toxicon 60: 1235–1244.PubMedCrossRefGoogle Scholar
  149. Umphres IV, G. D., D. L. Roelke & M. D. Netherland, 2013. The potential algaecide flumioxazin has little effect on growth, survival and feed conversion of the bluegill sunfish Lepomis macrochirus. Aquaculture 380–383: 80–83.CrossRefGoogle Scholar
  150. Uronen, P., S. Lehtinen, C. Legrand, P. Kuuppo & T. Tamminen, 2005. Haemolytic activity and allelopathy of the haptophyte Prymnesium parvum in nutrient-limited and balanced growth conditions. Marine Ecology Progress Series 299: 137–148.CrossRefGoogle Scholar
  151. Valenti Jr, T. W., S. V. James, M. Lahousse, K. A. Schug, D. L. Roelke, J. P. Grover & B. W. Brooks, 2010a. A mechanistic explanation for pH-dependent ambient aquatic toxicity of Prymnesium parvum Carter. Toxicon 55: 990–998.PubMedCrossRefGoogle Scholar
  152. Valenti Jr, T. W., S. V. James, M. Lahousse, K. A. Schug, D. L. Roelke, J. P. Grover & B. W. Brooks, 2010b. Influence of pH on amine toxicity and implications for harmful algal bloom ecology. Toxicon 55: 1038–1043.CrossRefGoogle Scholar
  153. Van Dolah, F. M., D. L. Roelke & R. Greene, 2001. Health and ecological impacts of harmful algal blooms: risk assessment needs. Human and Ecological Risk Assessment 7: 1329–1345.CrossRefGoogle Scholar
  154. VanLandeghem, M. M., M. D. Meyer, S. B. Cox, B. Sharma & R. Patiño, 2012. Spatial and temporal patterns of surface water quality and ichthyotoxicity in urban and rural river basins in Texas. Water Research 46: 6638–6651.PubMedCrossRefGoogle Scholar
  155. VanLandeghem, M. M., M. Farooqi, B. Farquhar & R. Patiño, 2013. Impacts of Golden Alga Prymnesium parvum on fish populations in reservoirs of the upper Colorado River and Brazos River basins, Texas. Transactions of the American Fisheries Society 142: 581–595.CrossRefGoogle Scholar
  156. VanLandeghem, M. M., M. Farooqi, G. M. Southard & R. Patiño, 2014a. Associations between water physicochemistry and Prymnesium parvum presence, abundance, and toxicity in west Texas reservoirs. Journal of the American Water Resources Association. doi: 10.1111/jawr.12262.Google Scholar
  157. VanLandeghem, M. M., M. Farooqi, G. M. Southard & R. Patiño, 2014b. Spatiotemporal associations of reservoir nutrient characteristics and the invasive Prymnesium parvum in west Texas. Journal of the American Water Resources Association. doi: 10.1111/jawr.12261.Google Scholar
  158. Vasas, G., M. M-Hamvas, G. Borics, S. Gonda, C. Mathe, K. Jambrik & Z. L. Nagy, 2012. Occurrence of toxic Prymnesium parvum blooms with high protease activity is related to fish mortality in Hungarian ponds. Harmful Algae 17: 102–110.CrossRefGoogle Scholar
  159. Weissbach, A. & C. Legrand, 2012. Effect of different salinities on growth and intra- and extracellular toxicity of four strains of the haptophyte Prymnesium parvum. Aquatic Microbial Ecology 67: 139–149.CrossRefGoogle Scholar
  160. Wurbs, R. A., A. S. Karama, I. Saleh & C. K. Ganze, 1993. Natural salt pollution and water supply reliability in the Brazos River basin. Technical Report No. 160, Texas Water Resources Institute: 177 pp.Google Scholar
  161. Yariv, J. & S. Hestrin, 1961. Toxicity of the extracellular phase of Prymnesium parvum cultures. Journal of General Microbiology 24: 165–175.PubMedCrossRefGoogle Scholar
  162. Yates, B. S. & W. J. Rogers, 2011. Atrazine selects for ichthyotoxic Prymnesium parvum, a possible explanation for golden algae blooms in lakes of Texas, USA. Ecotoxicology 20: 2003–2010.PubMedCrossRefGoogle Scholar
  163. Zamor, R. M., N. R. Franssen, C. Porter, T. M. Patton & K. D. Hambright, 2014. Rapid recovery of a fish assemblage following an ecosystem disruptive algal bloom. Freshwater Science 33: 390–401.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Daniel L. Roelke
    • 1
    Email author
  • Aaron Barkoh
    • 2
  • Bryan W. Brooks
    • 3
  • James P. Grover
    • 4
  • K. David Hambright
    • 5
  • John W. LaClaireII
    • 6
  • Peter D. R. Moeller
    • 7
  • Reynaldo Patino
    • 8
  1. 1.Department of Wildlife and Fisheries SciencesTexas A&M UniversityCollege StationUSA
  2. 2.Inland Fisheries Division, Heart of the Hills Fisheries Science CenterTexas Parks and Wildlife DepartmentMountain HomeUSA
  3. 3.Department of Environmental Science and Center for Reservoir and Aquatic Systems ResearchBaylor UniversityWacoUSA
  4. 4.Department of Biology and Program in Earth and Environmental ScienceUniversity of Texas at ArlingtonArlingtonUSA
  5. 5.Program in Ecology and Evolutionary Biology, Department of BiologyUniversity of OklahomaNormanUSA
  6. 6.Department of Molecular BiosciencesUniversity of Texas at AustinAustinUSA
  7. 7.NOAA Hollings Marine LaboratoryNational Centers for Coastal Ocean ScienceCharlestonUSA
  8. 8.U.S. Geological Survey, Texas Cooperative Fish and Wildlife Research Unit and Departments of Natural Resources Management and Biological Sciences, Texas Tech UniversityLubbockUSA

Personalised recommendations