Skip to main content
Log in

Functional phytoplankton distribution in hypertrophic systems across water body size

  • PHYTOPLANKTON & SPATIAL GRADIENTS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Distribution of algae was studied in a series of water bodies ranging from 10−2 to ~109 m2 in the lowland region of the Carpathian basin in a late summer period. It has been demonstrated that lake size has pronounced impact on the morphological and chemical properties of the water bodies, and acting through these variables it shapes the distribution of the various algal groups in the water bodies of different sizes. Changes of the relative abundance of the various algal groups along the spatial scale showed four apparently distinct patterns. We found increasing relative abundance of heterocytic cyanobacteria, dinoflagellates and those taxa which have no capability of active locomotion and are characterised by high sinking rate in the large water bodies. The flagellated algae (Chlamydomonas spp., euglenophytes, Synura spp.) and the tichoplanktonic elements were characteristic for small-sized water bodies. Most of the chrysophytes and several other flagellated taxa showed hump-shaped distribution along the size scale of water bodies. The group of large colonial flagellated chlorophytes, non-heterocytic filamentous cyanobacteria and filamentous chlorophytes occasionally occurred in high relative abundance both in small and large-sized water bodies. Our findings suggest that water body size has pronounced impact on the composition of algal assemblages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Borics, G., B. Tóthmérész, I. Grigorszky, J. Padisák, G. Várbíró & S. Szabó, 2003. Algal assemblage types of boglakes in Hungary and their relation to water chemistry, hydrological conditions and habitat diversity. Hydrobiologia 502: 145–155.

    Article  CAS  Google Scholar 

  • Borics, G., G. Várbíró, I. Grigorszky, E. Krasznai, S. Szabó & K. T. Kiss, 2007. A new evaluation technique of potamo-plankton for the assessment of the ecological status of rivers. Large Rivers 17(3–4): 465–486.

    Google Scholar 

  • Borics, G., A. Abonyi, E. Krasznai, G. Várbíró, I. Grigorszky, S. Szabó, C. Deák & B. Tóthmérész, 2011. Small-scale patchiness of the phytoplankton in a lentic oxbow. Journal of Plankton Research 33: 973–981.

    Article  Google Scholar 

  • Fee, E. J., J. A. Shearer, E. R. De Bruyn & D. W. Schnidler, 1992. Effects of lake size on phytoplankton photosynthesis. Canadian Journal of Fisheries and Aquatic Sciences 49: 2445–2459.

    Article  Google Scholar 

  • Grigorszky, I., J. Padisák, G. Borics, C. Schitchen & G. Borbély, 2003. Deep chlorophyll maximum by Ceratium hirundinella (O. F. Müller) Bergh in a shallow oxbow in Hungary. Hydrobiologia 506–509: 209–212.

    Article  Google Scholar 

  • Guildford, S. J., L. L. Hendzel, H. J. Kling, E. J. Fee, G. C. G. Robinson, R. E. Hecky & S. E. M. Kasian, 1994. Effects of lake size on phytoplankton nutrient status. Canadian Journal of Fisheries and Aquatic Sciences 51: 2769–2783.

    Article  Google Scholar 

  • Hastie, T. & R. J. Tibshirani, 1990. Generalized Additive Models. Chapman and Hall, London.

    Google Scholar 

  • Herkert, J. R., 1994. The effects of habitat fragmentation on midwestern grassland bird communities. Ecological Applications 4: 461–471.

    Article  Google Scholar 

  • Keddy, P. A., 1992. Assembly and response rules: two goals for predictive community ecology. Journal of Vegetation Science 3: 157–164.

    Article  Google Scholar 

  • Kerekes, J., 1977. The index of Lake Basin permanence. Internationale Revue der gesamten Hydrobiologie und Hydrographie 62(2): 291–293.

    Article  Google Scholar 

  • Komarek, J., 2013. Süsswasserflora von Mitteleuropa, Band 19/3.

  • Krasznai, E., G. Borics, G. Várbíró, A. Abonyi, J. Padisák, C. Deák & B. Tóthmérész, 2010. Characteristics of the pelagic phytoplankton in shallow oxbows. Hydrobiologia 639(1): 173–184.

    Article  CAS  Google Scholar 

  • Kruk, C., V. L. M. Huszar, E. Peeters, S. Bonilla, L. Costa, M. Lurling, C. S. Reynolds & M. Scheffer, 2010. A morphological classification capturing functional variation in phytoplankton. Freshwater Biology 55: 614–627.

    Article  Google Scholar 

  • Lemke, J. L., 2000. Across the scales of time: artifacts, activities, and meanings in ecosocial systems. Mind, Culture, and Activity 7: 273–290.

    Article  Google Scholar 

  • Meier, S. & J. Soininen, 2014. Phytoplankton metacommunity structure in subarctic rock pools. Aquatic Microbial Ecology 73: 81–91.

    Article  Google Scholar 

  • Padisák, J. & C. S. Reynolds, 2003. Shallow lakes: The absolute, the relative, the functional and the pragmatic. Hydrobiologia 506–509: 1–11.

    Article  Google Scholar 

  • Padisák, J., G. Borics, G. Fehér, I. Grigorszky, I. Oldal, A. Schmidt & Z. Zámbóné-Doma, 2003. Dominant species, functional assemblages and frequency of equilibrium phases in late summer phytoplankton assemblages in Hungarian small shallow lakes. Hydrobiologia 502: 157–168.

    Article  Google Scholar 

  • Padisák, J., L. O. Crossetti & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19.

    Article  Google Scholar 

  • Padisák, J., G. Vasas & G. Borics, 2015. Phycogeography of freshwater phytoplankton – traditional knowledge and new molecular tools. Hydrobiologia. doi:10.1007/s10750-015-2259-4.

    Google Scholar 

  • Phillips, G., O. P. Pietilainen, L. Carvalho, A. Solimini, A. Lyche Solheim & A. C. Cardoso, 2008. Chlorophyll–nutrient relationships of different lake types using a large European dataset. Aquatic Ecology 42: 213–226.

    Article  CAS  Google Scholar 

  • Post, D. M., M. L. Pace & N. G. Hairston, 2000. Ecosystem size determines food-chain length in lakes. Nature 405: 1047–1049.

    Article  CAS  PubMed  Google Scholar 

  • Poulicková, A., P. Hasler, M. Lysáková & B. Spears, 2008. The ecology of freshwater epipelic algae: an update. Phycologia 47: 437–450.

    Article  Google Scholar 

  • Reynolds, C. S., 2006. Ecology of Phytoplankton. Cambridge University Press, Cambridge: 535.

    Book  Google Scholar 

  • Reynolds, C. S., 2012. Environmental requirements and habitat preferences of phytoplankton: chance and certainty in species selection. Botanica Marina 55: 1–17.

    Article  Google Scholar 

  • Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.

    Article  Google Scholar 

  • Salmaso, N. & J. Padisák, 2007. Morpho-functional groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia 578: 97–112.

    Article  Google Scholar 

  • Scheffer, M. & E. H. van Nes, 2007. Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 584: 455–466.

    Article  CAS  Google Scholar 

  • Smayda, T. J., 1970. The suspension and sinking of phytoplankton in the sea. Oceanography and Marine Biology. Annual Review 8: 353–414.

    Google Scholar 

  • Smith, V. H., B. L. Foster, J. P. Grover, R. D. Holt, M. A. Leibold & F. de Noyelles Jr., 2005. Phytoplankton species richness scales consistently from laboratory microcosms to the world’s oceans. Proceedings of the National Academy of Sciences of the United States of America 102: 4393–4396.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Søndergaard, M., E. Jeppesen & J. P. Jensen, 2005. Pond or lake: Does it make any difference? Archiv Für Hydrobiologie 162: 143–165.

    Article  Google Scholar 

  • Stomp, M., J. Huisman, G. Mittelbach, E. Litchman & C. Klausmeier, 2011. Large-scale biodiversity patterns in freshwater phytoplankton. Ecology 92: 2096–2107.

    Article  PubMed  Google Scholar 

  • Tátrai, I., V. Istvánovics, L. G. Tóth & I. Kóbor, 2008. Management measures and long-term water quality changes in Lake Balaton (Hungary). Fundamental and Applied Limnology 172: 1–11.

    Article  Google Scholar 

  • Ter Braak, C. J. F., 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179.

    Article  Google Scholar 

  • Ter Braak C. J. F, & P. Smilauer, 2002. Canoco Reference Manual and Canodraw for Windows User’s Guide: Software for Canonical Community Ordination (Version 4.5). Microcomputer Power, Ithaca.

  • Ter Braak, C. J. F. & P. F. M. Verdonschot, 1995. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquatic Sciences 57: 253–287.

    Google Scholar 

  • Watson, S. B., E. McCauley & J. A. Downing, 1997. Patterns in phytoplankton taxonomic composition across temperate lakes of differing nutrient status. Limnology and Oceanography 42: 487–495.

    Article  Google Scholar 

  • Winslow, L. A., J. S. Read, P. C. Hanson & E. H. Stanley, 2014. Does lake size matter? Combining morphology and process modeling to examine the contribution of lake classes to population-scale processes. Inland Waters 5: 7–14.

    Article  Google Scholar 

  • Wetzel, R. G., 2001. Limnology, Lake and River Ecosystem. Academic Press, New York.

    Google Scholar 

  • Whittington, J., B. S. Sherman, D. Green & R. L. Oliver, 2000. Growth of Ceratium hirundinella in a sub-tropical Australian reservoir: the role of vertical migration. Journal of Plankton Research 22: 1025–1045.

    Article  Google Scholar 

  • Zakrys, B., J. Empel, R. Milanowski, R. Gromadka, P. Borsuk, M. Kedzior & J. Kwiatowski, 2004. Genetic variability of Euglena agilis (Euglenophyceae). Acta Societatis Botanicorum Poloniae 73: 305–309.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Hungarian National Science Foundation (OTKA Nr. 104279) and by the Bolyai Fellowship of the Hungarian Academy of Sciences. The authors were supported by TÁMOP-4.2.4.A/2-11-1-2012-0001, TÁMOP-4.2.1./B-09/1/KONV-2010-0007, TÁMOP-4.2.2/C-11/1/KONV-2012-0010 and TÁMOP-4.2.2/B-10-1-2010-0024 projects. The authors are grateful for the referees for their very constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gábor Várbíró.

Additional information

Guest editors: Luigi Naselli-Flores & Judit Padisák / Biogeography and Spatial Patterns of Biodiversity of Freshwater Phytoplankton

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 104 kb)

Supplementary material 2 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borics, G., Tóthmérész, B., Várbíró, G. et al. Functional phytoplankton distribution in hypertrophic systems across water body size. Hydrobiologia 764, 81–90 (2016). https://doi.org/10.1007/s10750-015-2268-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2268-3

Keywords

Navigation