Skip to main content

Spatial variation of trace metals within intertidal beds of native mussels (Mytilus edulis) and non-native Pacific oysters (Crassostrea gigas): implications for the food web?

Abstract

Pollution is of increasing concern within coastal regions and the prevalence of invasive species is also rising. Yet the impact of invasive species on the distribution and potential trophic transfer of metals has rarely been examined. Within European intertidal areas, the non-native Pacific oyster (Crassostrea gigas) is becoming established, forming reefs and displacing beds of the native blue mussel (Mytilus edulis). The main hypothesis tested is that the spatial pattern of metal accumulation within intertidal habitats will change should the abundance and distribution of C. gigas continue to increase. A comparative analysis of trace metal content (cadmium, lead, copper and zinc) in both species was carried out at four shores in south-east England. Metal concentrations in bivalve and sediment samples were determined after acid digestion by inductively coupled plasma-optical emission spectrometry. Although results showed variation in the quantities of zinc, copper and lead (mg m−2) in the two bivalve species, differences in shell thickness are also likely to influence the feeding behaviour of predators and intake of metals. The availability and potential for trophic transfer of metals within the coastal food web, should Pacific oysters transform intertidal habitats, is discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Almeida, M. J., G. Moura, T. Pinheiro, J. Machado & J. Coimbra, 1998. Modifications in Crassostrea gigas shell composition exposed to high concentrations of lead. Aquatic Toxicology. 40: 323–334.

    CAS  Article  Google Scholar 

  2. Amiard, J.-C. & B. Berthet, 1996. Fluctuations of cadmium, copper, lead and zinc concentrations in field populations of the Pacific Oyster Crassostrea gigas in the Bay of Bourgneuf (France). Annales de l’Institut Océanographique 72: 195–207.

    Google Scholar 

  3. Amiard-Triquet, C., B. Berthet, C. Metayer & J. C. Amiard, 1986. Contribution to the ecotoxicological study of cadmium, copper and zinc in the mussel Mytilus edulis. II. Experimental Study. Marine Biology 92: 7–13.

    CAS  Article  Google Scholar 

  4. Amiard, J.-C., C. Amiard-Triquet, L. Charbonnier, A. Mesnil, P. A. Rainbow & W.-X. Wang, 2008. Bioaccessibility of essential and non-essential metals in commercial shellfish from Western Europe and Asia. Food and Chemical Toxicology 46: 2010–2022.

    CAS  Article  PubMed  Google Scholar 

  5. Arifin, Z. & L. I. Bendell-Young, 1997. Feeding response and carbon assimilation by the blue mussel Mytilus trossulus exposed to environmentally relevant seston matrices. Marine Ecology Progress Series 160: 241–253.

    CAS  Article  Google Scholar 

  6. Blackmore, G. & W.-X. Wang, 2004. The transfer of cadmium, mercury, methylmercury, and zinc in an intertidal rocky shore food chain. Journal of Experimental Marine Biology and Ecology 307: 91–110.

    CAS  Article  Google Scholar 

  7. BODC, 2014. British Oceanographic Data Centre [www.bodc.ac.uk]

  8. Bragigand, V., B. Berthet, J.-C. Amiard & P. S. Rainbow, 2004. Estimates of trace metal bioavailability to humans ingesting contaminated oysters. Food and Chemical Toxicology 42: 1893–1902.

    CAS  Article  PubMed  Google Scholar 

  9. Bryan, G. W., 1971. The effects of heavy metals (other than mercury) on marine and estuarine organisms. Proceedings of the Royal Society of London B Series 177: 389–410.

    CAS  Article  Google Scholar 

  10. Bryan, G. W. & W. J. Langston, 1992. Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: a review. Environmental Pollution 76: 89–131.

    CAS  Article  PubMed  Google Scholar 

  11. Bryan, G. W., W. J. Langston, L. G. Hummerstone & G. R. Burt, 1985. A guide to the assessment of heavy metal contamination in estuaries using biological indicators. Journal of the Marine Biological Association of the United Kingdom Occasional Publication 4: 92 pp.

  12. Buddo, D. S., R. D. Steele & M. K. Webber, 2012. Public health risks posed by the invasive Indo-Pacific green mussel, Perna viridis (Linnaeus, 1758) in Kingston Harbour, Jamaica. Bioinvasions Records 1: 171–178.

    Article  Google Scholar 

  13. Byers, J., 2009. Competition in marine invasions. In Rilov, G. & J. A. Crooks (eds), Biological Invasions in Marine Ecosystems. Springer, Berlin: 245–258.

    Chapter  Google Scholar 

  14. Clark, R. B., 2001. Marine Pollution. Oxford University Press, Oxford.

    Google Scholar 

  15. Councell, T. B., K. U. Duckenfield, E. R. Landa & E. Callender, 2004. Tire-wear particles as a source of zinc to the environment. Environmental Science and Technology 38: 4204–4206.

    Article  Google Scholar 

  16. Crooks, J. A., 2009. The role of exotic ecosystem engineers. In Rilov, G. & J. A. Crooks (eds), Biological Invasions in Marine Ecosystems. Springer, Berlin.

    Google Scholar 

  17. Crothers, J., 1985. Dog-whelks: an introduction to the biology of Nucella lapillus (L.). Field Studies 6: 291–360.

    Google Scholar 

  18. Dare, P. J., G. Davies & D. B. Edwards (1983). Predation of juvenile Pacific oysters (Crassostrea gigas Thunberg) and mussels (Mytilus edulis L.) by shore crabs (Carcinus maenas (L.). Fisheries Research Technical Report No. 73. Ministry of Agriculture, Fisheries and Food, Directorate of Fisheries Research.

  19. Dare, P. J., M. C. Bell, P. Walker, P. & R. C. A. Bannister, 2004. Historical and current status of cockles and mussel stocks in the Wash. CEFAS, Lowestoft: 85 pp.

  20. de Rivera, C. E., B. P. Steves, P. W. Fononoff, A. H. Hines & G. M. Ruiz, 2011. Potential for high latitude marine invasions along western North America. Diversity and Distributions 17: 1198–1209.

    Article  Google Scholar 

  21. Depledge, M. H. & P. S. Rainbow, 1990. Models of regulation and accumulation of trace metals in marine invertebrates. Comparative Biochemistry Physiology 97C: 1–7.

    CAS  Google Scholar 

  22. Diederich, S., 2005. Differential recruitment of introduced Pacific oysters and native mussels at the North Sea coast: coexistence possible? Journal of Sea Research 53: 269–281.

    Article  Google Scholar 

  23. Dolmer, P., 1998. The interactions between bed structure of Mytilus edilus L. and the predator Asterias rubens L. Journal of Experimental Marine Biology and Ecology 228: 137–150.

    Article  Google Scholar 

  24. Dutertre, M., P. Beninger, L. Barille, M. Papin & J. Haure, 2010. Rising water temperatures, reproduction and recruitment of an invasive oyster, Crassostrea gigas, on the French Atlantic coast. Marine Environmental Research 69: 1–9.

    CAS  Article  PubMed  Google Scholar 

  25. Eno, N. C., R. A. Clarke & W. Sanderson, 1997. Non-native Marine Species in British Waters: A Review and Directory. Joint Nature Conservation Committee, Peterborough.

    Google Scholar 

  26. Escapa, M., J. P. Isacch, P. Daleo, J. Alberti, O. Iribarne, M. Borges, E. P. Dos Santos, D. A. Gagliardini & M. Lasta, 2004. The distribution and ecological effects of the introduced Pacific oyster Crassostrea gigas (Thunberg, 1793) in northern Patagonia. Journal of Shellfish Research 23: 722–765.

    Google Scholar 

  27. Eschweiler, N. & H. Christensen, 2011. Trade-off between increased survival and reduced growth for blue mussels living on Pacific oyster reefs. Journal of Experimental Marine Biology and Ecology 403: 90–95.

    Article  Google Scholar 

  28. Ettajani, H., C. Amiard-Triquet & J. C. Amiard, 1992. Etude expérimentale du transfert de deux éléments traces (Ag, Cu) dans une chaîne trophique marine: eau, particules (sédiment naturel, microalgue), mollusques filtreurs (Crassostrea gigas Thunberg). Water Air Soil Pollution 65: 215–236.

    CAS  Article  Google Scholar 

  29. Folk, R. L., 1954. The distinction between grain size and mineral composition in sedimentary rock nomenclature. Journal of Geology 62: 344–359.

    CAS  Article  Google Scholar 

  30. Frandsen, R. & P. Dolmer, 2002. Effects of substrate type on growth and mortality of blue mussels (Mytilus edulis) exposed to the predator Carcinus maenas. Marine Biology 141: 253–262.

    Article  Google Scholar 

  31. Geffard, A., A. Y. Jeantet, J. C. Amiard, M. Le Pennec, C. Ballan-Dufranҫais & C. Amiard-Triquet, 2004. Comparative study of metal handling strategies in bivalves Mytilus edulis and Crassostrea gigas: a multidisciplinary approach. Journal of the Marine Biological Association of the United Kingdom 84: 641–650.

    CAS  Article  Google Scholar 

  32. Giltrap, M., A. Macken, M. Davoren, E. McGovern, B. Foley, M. Larsen, J. White & B. McHugh, 2013. Utilising caging techniques to investigate metal assimilation in Nucella lapillus, Mytilus edulis and Crassostrea gigas at three Irish coastal locations. Estuarine, Coastal and Shelf Science 132: 77–86.

    CAS  Article  Google Scholar 

  33. Goss-Custard, J. D. (ed.), 1996. The Oystercatcher : From Individuals to Populations. Oxford University Press, Oxford.

    Google Scholar 

  34. Guéguen, M., J.-C. Amiard, N. Arnich, P.-M. Badot, D. Claisse, T. Guérin & J.-P. Vernoux, 2011. Shellfish and residual chemical contaminants: hazards, monitoring, and health risk assessment along French Coasts. Reviews of Environmental Contamination and Toxicology 213: 55–111.

    PubMed  Google Scholar 

  35. Guo, F., Y. Yang & W.-X. Wang, 2013. Metal bioavailability from different natural prey to a marine predator Nassarius siquijorensis. Aquatic Toxicology 126: 266–273.

    CAS  Article  PubMed  Google Scholar 

  36. Harrell Jr., F. E. with contributions from Charles Dupont and many others, 2014. Hmisc: Harrell Miscellaneous. R package version 3.14-5 [http://CRAN.R-project.org/package=Hmisc].

  37. Hawkins, S. J., H. E. Sugden, N. Mieszkowska, P. J. Moore, E. Poloczanska, R. Leaper, R. J. H. Herbert, M. J. Genner, P. S. Moschella, R. C. Thompson, S. R. Jenkins, A. J. Southward & M. T. Burrows, 2009. Consequences of climate-driven biodiversity changes for ecosystem functioning of North European rocky shores. Marine Ecology-Progress Series 396: 245–259.

    Article  Google Scholar 

  38. He, M. & X.-E. Wang, 2013. Bioaccessibility of 12 trace elements in marine molluscs. Food and Chemical Toxicology 55: 627–636.

    CAS  Article  PubMed  Google Scholar 

  39. Herbert, R. J. H., C. Roberts, J. Humphreys & S. Fletcher, 2012. The Pacific Oyster Crassostrea gigas in the UK: Economic, Legal and Environmental Issues Associated with its Cultivation, Wild Establishment and Exploitation. Shellfish Association of Great Britain, London.

    Google Scholar 

  40. Hübner, R., K. B. Astin & R. J. H. Herbert, 2009. Comparison of sediment quality guidelines (SQGs) for the assessment of metal contamination in marine and estuarine environments. Journal of Environmental Monitoring 11: 713–722.

    Article  PubMed  Google Scholar 

  41. Hübner, R., R. J. H. Herbert & K. B. Astin, 2010. Cadmium release caused by the die-back of the saltmarsh cord grass Spartina anglica in Poole Harbour (UK) Estuarine and Coastal Shelf. Science 87: 553–560.

    Google Scholar 

  42. Jones, J. & A. Franklin, 2000. Monitoring and surveillance of non-radioactive contaminants in the aquatic environment and activities regulating the disposal of wastes at sea, 1997. Aquatic Environment Monitoring Report. CEFAS, Lowestoft: 92 pp.

  43. Kennish, M. J., 1997. Practical Handbook of Estuarine and Marine Pollution. CRC Press Inc., Boca Raton.

    Google Scholar 

  44. Kushel, G. & M. Timperley, 1999. The effect of stormwater and transport on urban streams and estuaries. Water and Atmosphere 7: 22–25.

    Google Scholar 

  45. Langston, W. J., M. J. Bebianno & G. R. Burt, 1998. Metal handling strategies in molluscs. In Langston, W. J. & M. J. Bebianno (eds), Metal Metabolism in Aquatic Environments. Chapman & Hall, London: 219–283.

    Chapter  Google Scholar 

  46. Lejart, M. & C. Hily, 2011. Differential response of benthic macrofauna to the formation of novel oyster reefs (Crassostrea gigas, Thunberg) on soft and rocky substrate in the intertidal Bay of Brest, France. Journal of Sea Research 65: 84–93.

    Article  Google Scholar 

  47. Lekhi, P., D. Cassis, C. M. Pearce, N. Ebell, M. T. Maldonado & K. J. Orians, 2008. Role of dissolved and particulate cadmium in the accumulation of cadmium in cultured oysters (Crassostrea gigas). Science of the Total Environment 393: 309–325.

    CAS  Article  PubMed  Google Scholar 

  48. Lenz, M., B. A. P. daGama, N. V. Gerner, J. Gobin, F. Gröner, A. Harry, S. R. Jenkins, P. Kraufvelin, C. Mummelthei, J. Sareykai, E. A. Xavier & M. Wahl, 2011. Non-native marine invertebrates are more tolerant towards environmental stress than taxonomically related native species: results from a globally replicated study. Marine Environmental Research 111: 943–952.

    CAS  Article  Google Scholar 

  49. Lobel, P. B. & D. A. Wright, 1982. Total body zinc concentration and allometric growth ratios in Mytilus edulis collected from different shore levels. Marine Biology 66: 231–236.

    CAS  Article  Google Scholar 

  50. Maichin, B., P. Kettisch & G. Knapp, 2000. Investigation of microwave assisted drying of samples and evaporation of aqueous solutions in trace elements analysis. Fresenius Journal of Analytical Chemistry 366: 26–29.

    CAS  Article  PubMed  Google Scholar 

  51. Markert, A., W. Esser, D. Frank, A. Wehrmann & K.-M. Exo, 2013. Habitat change by the formation of alien Crassostrea-reefs in the Wadden Sea and its role as feeding sites for waterbirds. Estuarine, Coastal and Shelf Science 131: 41–51.

    Article  Google Scholar 

  52. Mayer-Pinto, M., A. J. Underwood, T. Tolhurst & R. A. Coleman, 2010. Effects of metals on aquatic assemblages: What do we really know? Journal of Experimental Marine Biology and Ecology 391: 1–10.

    CAS  Article  Google Scholar 

  53. McKenzie, L. A., R. C. Brooks & E. L. Johnston, 2012. A widespread contaminant enhances invasion success of a marine invader. Journal of Applied Ecology 49: 767–773.

    CAS  Article  Google Scholar 

  54. McKnight, W., 2012. Pacific Oyster Distribution within the North East Kent European Marine Sites (intertidal). Phase 5 Report. Natural England, Peterborough.

    Google Scholar 

  55. Miller, A. W., G. M. Ruiz, M. S. Minton & R. F. Ambrose, 2007. Differentiating successful and failed molluscan invaders in estuarine ecosystems. Marine Ecology-Progress Series 332: 41–51.

    Article  Google Scholar 

  56. Millward, C. G. & P. D. Klucker, 1989. Microwave digestion technique for the extraction of minerals from environmental marine sediments for analysis by inductively coupled plasma atomic emission spectrometry and atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry 4: 709–713.

    CAS  Article  Google Scholar 

  57. Miossec, L., R. M. Le Deuff & P. Goulletquer, 2009. Alien species alert: Crassostrea gigas (Pacific oyster). Co-operative Research Report No. 299. Co-operative Research Report No. 299. International Council for the Exploration of the Sea (ICES), Copenhagen.

    Google Scholar 

  58. Nehls, G. & H. Buttger, 2007. Spread of the Pacific Oyster Crassostrea gigas in the Wadden Sea: Causes and Consequences of a Successful Invasion. BioConsult SH on behalf of the Common Wadden Sea Secretariat, Wilhelmshaven.

    Google Scholar 

  59. Newell, R. I. E. & S. J. Jordan, 1983. Preferential ingestion of organic material by the American oyster Crassostrea virginica. Marine Ecology Progress Series 13: 47–53.

    Article  Google Scholar 

  60. Nishjkawa-Kjnomura, K. A, 1978. Trace elements in oyster biodeposit. MSc Thesis. Oregon State University, Corvallis.

  61. OSPAR, 2009. Background Document on Coordinated Environmental Monitoring Programme (CEMP) Assessment Criteria for the Quality Status Report (QSR) 2010. Publication Number 461/2009. OSPAR Commission, London.

    Google Scholar 

  62. Osuna-Martίnez, C. C., F. Páez-Osuna & R. Alonso-Rodrίguez, 2011. Cadmium, copper, lead and zinc in cultured oysters under two contrasting climatic conditions in coastal lagoons from the SE Gulf of California. Bulletin of Environmental Contamination and Toxicology 87: 272–275.

    Article  Google Scholar 

  63. Peña-Icart, M., M. E. V. Tagle, C. Alonso-Hernández, J. Rodríguez Hernández, M. Behar & M. S. Pomares Alfonso, 2011. Comparative study of digestion methods EPA 3050B (HNO3–H2O2–HCl) and ISO 11466.3 (aqua regia) for Cu, Ni and Pb contamination assessment in marine sediments. Marine Environmental Research 72: 60–66.

    Article  PubMed  Google Scholar 

  64. Phillips, D. J. H., 1980. Quantitative Aquatic Biological Indicators. Applied Science Publishers Ltd., London.

    Google Scholar 

  65. Phillips, D. J. H. & P. S. Rainbow, 1989. Strategies of trace metal sequestration in aquatic organisms. Marine Environmental Research 28: 207–210.

    CAS  Article  Google Scholar 

  66. Pinnegar, J., T.Watt & K. Kennedy, 2012. Climate change risk assessment for the marine and fisheries sector. Department of Food and Rural Affairs [http://www.defra.gov.uk/environment/climate/government/]

  67. Piola, R. F. & E. L. Johnston, 2009. Comparing differential tolerance of native and non-indigenous marine species to metal pollution using novel assay techniques. Environmental Pollution 157: 2853–2864.

    CAS  Article  PubMed  Google Scholar 

  68. Quayle, D. B., 1964. Distribution of introduced marine mollusca in British Columbia waters. Journal of the Fisheries Research Board of Canada 21: 1155–1181.

    Article  Google Scholar 

  69. Rainbow, P. S., 1992. The accumulation by marine organisms of heavy metals and its significance marine environmental science/Haiyang Huanjing Kexue. Dalian 11: 44–52.

    Google Scholar 

  70. Rainbow, P. S., 2002. Trace metal concentrations in aquatic invertebrates: why and so what? Environmental Pollution 120: 497–507.

    CAS  Article  PubMed  Google Scholar 

  71. Rainbow, P. S., 2007. Trace metal bioaccumulation: models, metabolic availability and toxicity. Environment International 33: 576–582.

    CAS  Article  PubMed  Google Scholar 

  72. Rainbow, P. S. & B. D. Smith, 2010. Trophic transfer of trace metals: subcellular compartmentalisation in bivalve prey and comparative assimilation efficiencies of two invertebrate predators. Journal of Experimental Marine Biology and Ecology 390: 143–148.

    CAS  Article  Google Scholar 

  73. Rainbow, P. S. J.-C., C. Amiard-Triquet Amiard, M.-S. Cheung, L. Zhang, H. Zhong & W.-X. Wang, 2007. Trophic transfer of trace metals: subcellular compartmentalization in bivalve prey, assimilation by a gastropod predator and in vitro digestion simulations. Marine Ecology Progress Series 348: 125–138.

    CAS  Article  Google Scholar 

  74. Rainbow, P. S., S. N. Luoma & W.-X. Wang, 2011. Trophically available metal – a variable feast. Environmental Pollution 159: 2347–2349.

    CAS  Article  PubMed  Google Scholar 

  75. Reise, K., 1998. Pacific Oyster invade mussel beds in the European Wadden Sea. Senkenbergiana Maritima 28: 167–175.

    Article  Google Scholar 

  76. Rilov, G., 2009. Predator-prey interactions of marine invadors. In Rilov, G. & J. A. Crooks (eds), Biological Invasions in Marine Ecosystems. Springer, Berlin: 261–281.

    Chapter  Google Scholar 

  77. Rilov, G. & J. A. Crooks, 2009. Biological Invasions in Marine Ecosystems. Springer, Berlin.

    Book  Google Scholar 

  78. R Core Team, 2013. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna [http://www.R-project.org/].

  79. Roesijadi, G., 1996. Environmental factors: response to metals. In Kennedy, V. S., R. I. E. Newell & A. F. Eble (eds), The Eastern Oyster Crassostrea virginica. Maryland Sea Grant, College Park, MD: 515–537.

    Google Scholar 

  80. Roesjadi, G. & W. E. Robinson, 1994. Metal regulation in aquatic animals: mechanisms of uptake, accumulation, and release. In Malins, D. C. & G. Ostrander (eds), Molecular Mechanisms in Aquatic Toxicology. Lewis Publishers, Boca Raton: 387–420.

    Google Scholar 

  81. Ruesink, J., H. Lenihan, A. Trimble, K. Heiman, F. Micheli, J. Byers & M. Kay, 2005. Introduction of non-native oysters: ecosystem effects and restoration implications. Annual Review of Ecology Evolution and Systematics 36: 643-C-1.

    Article  Google Scholar 

  82. Ruesink, J., 2007. Biotic resistance and facilitation of a non-native oyster on rocky shores. Marine Ecology-Progress Series 331: 1–9.

    Article  Google Scholar 

  83. Scheiffarth, G., B. Ens & A. Schmidt, 2007. What will happen to birds when Pacific Oysters take over the mussel beds in the Wadden Sea? Wadden Sea Newsletter: 10–14.

  84. Smaal, A., M. R. Van Stralen & M. R. Craeymeersch, 2005. Does the introduction of the Pacific oyster (Crassostrea gigas) lead to species shifts in the Wadden Sea? In Dame, R. F. & S. Olenin (eds), The Comparative Roles of Suspension Feeders in Ecosystems. Springer, Berlin: 277–289.

    Chapter  Google Scholar 

  85. Sorte, C. J. B., S. L. Williams, R. A. Zerbecki & A. Robyn, 2010. Ocean warming increases threat of invasive species in a marine fouling community. Ecology 91: 2198–2204.

    Article  PubMed  Google Scholar 

  86. Tripp, B. W., J. W. Farrington, E. D. Goldberg & J. Sericano, 1992. International Mussel Watch. The initial implementation phase. Marine Pollution Bulletin 24: 371–373.

    Article  Google Scholar 

  87. Troost, K., 2010. Causes and effects of a highly successful marine invasion: case study of the introduced Pacific Oyster Crassostrea gigas on continental NW European estuaries. Journal of Sea Research 64: 145–165.

    Article  Google Scholar 

  88. Troost, K., E. J. Stamhuis, L. A. Van Duren & W. J. Wolff, 2009. Feeding current characteristics of three morphologically different bivalve suspension feeders, Crassostrea gigas, Mytilus edulis and Cerastoderma edule, in relation to food competition. Marine Biology 156: 355–372.

    Article  Google Scholar 

  89. Villamagna, A. M. & B. R. Murphy, 2010. Ecological and socio-economic impacts of invasive water hyacinth (Eichhornia crassipes): a review. Freshwater Biology 55: 282–298.

    Article  Google Scholar 

  90. Wang, W.-X., 2002. Interactions of trace metals and different marine food chains. Marine Ecology Progress Series 243: 295–309.

    CAS  Article  Google Scholar 

  91. Wang, W.-X. & P. S. Rainbow, 2008. Comparative approaches to understand metal bioaccumulation in aquatic animals. Comparative Biochemistry and Physiology, Part C 148: 315–323.

    Google Scholar 

  92. White, H., 1980. A heteroskedastic consistent covariance matrix estimator and a direct test of heteroskedasticity. Econometrica 48: 817–838.

    Article  Google Scholar 

  93. Wright, W. H. & D. J. Bailey, 2009. Investigation into the Biology, Spatial Distribution, Harvesting and Management of Seed Mussel Populations in Kent & Essex Sea Fisheries Committee District. Kent & Essex Sea Fisheries Committee, Ramsgate.

  94. Wright, P. & C. F. Mason, 1999. Spatial and seasonal variation in heavy metals in the sediments and biota of two adjacent estuaries, the Orwell and the Stour, in eastern England. The Science of the Total Environment 226: 139–156.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

Special thanks to Karen Walmsley, the Environment Agency, Willie McKnight from the North East Kent Advisory Group, Tony Child of the Thanet Coast Project and Chris Moody for producing the map figure. We are also grateful to the reviewers for their helpful and constructive comments on the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. J. H. Herbert.

Additional information

Handling editor: Pierluigi Viaroli

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 165 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bray, D.J., Green, I., Golicher, D. et al. Spatial variation of trace metals within intertidal beds of native mussels (Mytilus edulis) and non-native Pacific oysters (Crassostrea gigas): implications for the food web?. Hydrobiologia 757, 235–249 (2015). https://doi.org/10.1007/s10750-015-2255-8

Download citation

Keywords

  • Pacific oyster (Crassostrea gigas)
  • Mussel (Mytilus edulis)
  • Non-native species
  • Invasive species Metals (Cd, Pb, Cu, Zn)
  • North Sea
  • Trophic transfer
  • Multiple stressors