Skip to main content

Digestive flexibility in response to environmental salinity and temperature in the non-symbiotic sea anemone Bunodosoma zamponii

Abstract

In spite of their ecological importance in tidal pools, studies on digestive flexibility in non-symbiotic anemones (i.e., without symbiosis throughout their life) upon changes in key environmental factors are lacking. This study constitutes the first work to investigate the response of digestive enzymes in relation to high environmental salinity and temperature in a non-symbiotic sea anemone. We determined the occurrence and biochemical characteristics of maltase activity and compared maltase and proteolytic activities in mesenterial filaments in Bunodosoma zamponii from the intertidal area of Punta Cantera, Mar del Plata, Argentina (38°05′S, 57°32′W) acclimated to 35 and 40 psu and after an acute enhancement (15 min) of temperature from 20° to 30°C. Maltase activity was higher in 40 psu and upon the increase in temperature (about 80 and 99%, respectively). Proteolytic activity was not affected in any case. The results suggest the occurrence of specific digestive adjustments in relation to high salinity and temperature. The fact that differential modulation of maltase activity could be associated with a higher digestive capacity for glycogenic substrates is discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Acuña, F. H., 1993. Ecología poblacional de las principales especies de actiniarios (Cnidaria: Anthozoa) del intermareal marplatense y zonas adyacentes. Ph D thesis. Universidad Nacional de Mar delPlata, Argentina: 163.

  • Acuña, F. H. & M. O. Zamponi, 1995. Feeding ecology of interdital sea anemone (Cnidaria:Actiniaria): Food resources and thophic parameters. Biociencia 3(2): 73–84.

    Google Scholar 

  • Acuña, F. & M. O. Zamponi, 1996. Ecologia trofica de las anémonas intermarealeas Phymactis clematis (Dana 1849) Aulactinia marplatensis (Zamponi 1977) A. reynaudi (Mille Edwards, 1857). Ciencias Marinas 22(4): 397–413.

    Google Scholar 

  • Amado, E. M., D. Vidolin, C. A. Freire & M. M. Souza, 2011. Distinct patterns of water and osmolyte control between intertidal (Bunodosoma caissarum) and subtidal (Anemonia sargassensis) sea anemones. Comparative Biochemistry and Physiology Part A 158: 542–551.

    Article  CAS  Google Scholar 

  • Anctil, M., 2009. Chemical transmission in the sea anemone Nematostella vectensis: a genomic perspective. Comparative Biochemistry and Physiology Part D 4: 268–289.

    Google Scholar 

  • Asaro, A., 2009. Actividad de amilasa y disacaridasas en los cangrejos estuariales Chasmagnathus granulatus y Cyrtograpsus angulatus: respuestas a distintas condiciones ambientales. Tesis de Licenciatura. Universidad Nacional de Mar del Plata.

  • Asaro, A., J. C. del Valle & A. A. López Mañanes, 2010. Amylase and maltase activities in hepatopancreas of Cyrtograpsus angulatus: response to environmental salinity. Biocell 34(2): A86.

    Google Scholar 

  • Asaro, A., J. C. del Valle & A. A. López Mañanes, 2011a. Amylase, maltase and sucrase activities in hepatopancreas of the euryhaline crab Neohelice granulata (Decapoda: Brachyura: Varunidae): partial characterization and response to low environmental salinity. Scientia Marina 75: 517–524.

    Article  CAS  Google Scholar 

  • Asaro, A., J. C. del Valle & A. A. López Mañanes, 2011b. Sucrase activity in the hepatopancreas of the euryhaline crab Cyrtograpsus angulatus: response to environmental salinity. Biocell 35(2): 141.

    Google Scholar 

  • Bachar, A., Y. Achituv, Z. Pasternak & Z. Dubinsky, 2007. Autotrophy versus heterotrophy: the origin of carbon determines its fate in a symbiotic sea anemone. Journal of Experimental Marine Biology and Ecology 349: 295–298.

    Article  CAS  Google Scholar 

  • Benson-Rodenbough, B. & W. R. Ellington, 1982. Responses of the euryhaline sea anemone Bunodosoma cavernata (Bosc) (Anthozoa, Actinaria, Actiniidae) to osmotic stress. Comparative Biochemistry and Physiology Part A 72(4): 731–735.

    Article  Google Scholar 

  • Bingham, B. L., I. Freytes, M. Emery, J. Dimond & G. Muller-Parker, 2011. Aerial exposure and body temperature of the intertidal sea anemone Anthopleura elegantissima. Invertebrate Biology 130(4): 291–301.

    Article  Google Scholar 

  • Bozinovic, F., P. Calosi & J. L. Spicer, 2011. Physiological correlates of geographic range in animals. Annual Review of Ecology Evolution and Systematics 42: 155–179.

    Article  Google Scholar 

  • Bradford, M. M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein-dye binding. Analytical Biochemistry 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Brethes, J., B. Parent & J. Pellerin, 1994. Enzymatic activity as an index of trophic resource utilization by the snow crab Chionoecetes opilio (O. Fabricius). Journal of Crustacean Biology 14: 220–225.

    Article  Google Scholar 

  • Burriesci, M. S., T. K. Raab & J. R. Pringle, 2012. Evidence that glucose is the major transferred metabolite in dinoflagellate–cnidarians. Journal of Experimental Biology 215: 3467–3477.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Castro-González, M. I., F. Pérez-Gil, S. Pérez-Estrella & S. Carrillo-Domínguez, 1996. Chemical composition of the green alga Ulva lactuca. Ciencias Marinas 22(3): 205–213.

    Google Scholar 

  • Choresh, O., E. Ron & Y. Loya, 2001. The 60-kDa heat shock protein (HSP60) of the sea anemone Anemonia viridis: a potential early warning system for environmental changes. Marine Biotechnology 3: 501–508.

    Article  CAS  PubMed  Google Scholar 

  • Chung, Y. S., R. M. Cooper, J. Graff & R. L. Cooper, 2012. The acute and chronic effect of low temperature on survival, heart rate and neural function in crayfish (Procambarus clarkii) and prawn (Macrobrachium rosenbergii) species. Open Journal of Molecular and Integrative Physiology 2: 75–86.

    Article  Google Scholar 

  • Cowlin, M., 2012 Osmoregulation and the anthozoan dinoflagellate symbiosis. Msc thesis. University of Wellington,Victoria.

  • del Valle, J. C. & A. A. López Mañanes, 2008. Digestive strategies in the South American subterranean rodent Ctenomys talarum. Comparative Biochemistry and Physiology Part A 150: 387–394.

    Article  CAS  Google Scholar 

  • del Valle, J. C. & A. A. López Mañanes, 2011. Digestive flexibility in females of the subterranean rodent Ctenomys talarum in their natural habitat. Journal of Experimental Zoology A 315(3): 141–148.

    Article  CAS  Google Scholar 

  • del Valle, J. C., A. A. López Mañanes & C. Busch, 2004. Phenotypic flexibility of digestive morphology and physiology of the South American omnivorous rodent Akodon azarae (Rodentia: Sigmodontinae). Comparative Biochemistry and Physiology Part A 139: 503–512.

    Article  CAS  Google Scholar 

  • Dhital, S., A. H.-M. Lin, B. R. Hamaker, M. J. Gidley & A. Muniandy, 2013. Mammalian mucosal a-glucosidases coordinate with a-amylase in the initial starch hydrolysis stage to have a role in starch digestion beyond glucogenesis. PLoS ONE 8(4): e62546. doi:10.1371/journal.pone.00625461.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Diniz, G. S., E. Barbarino & S. O. Lourenço, 2012. On the chemical profile of marine organisms from coastal subtropical environments: gross composition and nitrogen-to-protein conversion factors. In Marcelli, M. (ed.), Earth and Planetary Sciences: Oceanography and Atmospheric Sciences. Oceanography. Intech, Rijeka: 297–320.

    Google Scholar 

  • Excoffon, A. C. & M. O. Zamponi, 1991. La biología reproductiva de Phymactis clematis Dana, 1849 (Actiniaria: Actiniidae): gametogénesis, períodos reproductivos y desarrollo larval. Spheniscus 9: 25–39.

    Google Scholar 

  • Figueiredo, M. S. R. B. & A. J. Anderson, 2009. Digestive enzyme spectra in crustacean decapods (Paleomonidae, Portunidae and Penaeidae) feeding in the natural habitat. Aquaculture Research 40(3): 282–291.

    Article  CAS  Google Scholar 

  • Foster, C., M. Enelise, E. M. Amado & C. A. Freire, 2010. Do osmoregulators have lower capacity of muscle water regulation than osmoconformers? A study on decapod crustaceans. Journal of Experimental Zoology 313A: 80–94.

    Google Scholar 

  • German, D. P. & R. A. Bittong, 2009. Digestive enzyme activities and gastrointestinal fermentation in wood-eating catfishes. Journal of Comparative Physiology Part B 179: 1025–1042.

    Article  CAS  Google Scholar 

  • Gibson, D. & G. H. Dixon, 1969. Chymotrypsin-like proteases from the sea anemone, Metridium senile. Nature 222: 753–756.

    Article  CAS  PubMed  Google Scholar 

  • Gomes, P. G., R. Schama & A. M. Sole-Cava, 2012. Molecular and morphological evidence that Phymactis papillosa from Argentina is, in fact, a new species of the genus Bunodosoma (Cnidaria: Actiniidae). Journal of the Marine Biological Association of United Kingdom 92: 895–910.

    Article  Google Scholar 

  • Helmuth, B. S., 2009. From cells to coastlines: how can we use physiology to forecast the impacts of climate change? Journal of Experimental Biology 212: 753–760.

    Article  PubMed  Google Scholar 

  • Hofmann, G. E. & A. E. Todgham, 2010. Living in the now: physiological mechanisms to tolerate a rapidly changing environment. Annual Review of Physiology 72: 127–145.

    Article  CAS  PubMed  Google Scholar 

  • Johnston, D. J. & J. Freeman, 2005. Dietary preference and digestive enzyme activities as indicators of trophic resource utilization by six species of crab. The Biological Bulletin 208(1): 36–46.

    Article  CAS  PubMed  Google Scholar 

  • Kasschau, M. R., C. M. Skisak, J. P. Cook & W. R. Mills, 1984. β-alanine metabolism and high salinity stress in the sea anemone, Bunodosoma cavernata. Comparative Biochemistry and Physiology Part B 154(2): 181–186.

    CAS  Google Scholar 

  • Kelly, S. A., T. M. Panhuis & A. M. Stoehr, 2012. Phenotypic plasticity: molecular mechanisms and adaptive significance. Comprehensive Physiology 2: 1417–1439.

    PubMed  Google Scholar 

  • Li, E., L. Chen, C. Zeng, N. Yu, Z. Xiong, X. Chen & J. G. Qin, 2008. Comparison of digestive and antioxidant enzymes activities, haemolymph oxyhemocyanin contents and hepatopancreas histology of white shrimp, Litopenaeus vannamei, at various salinities. Aquaculture 274: 80–86.

    Article  CAS  Google Scholar 

  • Lin, A. H.-M., B. L. Nichols, R. Quezada-Calvillo, S. E. Avery, L. Sim, D. R. Rose, H. Y. Naim & B. R. Hamaker, 2012. Unexpected high digestion rate of cooked starch by the Ct-maltase-glucoamylase small intestine mucosal α-glucosidase subunit. PLoS ONE 7(5): e35473.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • López Mañanes, A. A., L. J. Magnoni & A. L. Goldemberg, 2000. Branchial carbonic anhydrase (CA) of gills of Chasmagnathus granulata (Crustacea Decapoda). Comparative Biochemistry and Physiology Part B 127: 85–95.

    Article  Google Scholar 

  • Maffia, M., R. Acierno, G. Deceglie, S. Vilella & C. Storelli, 1993. Adaptation of intestinal cell membrane enzymes to low temperatures in the Antarctic teleost Pagothenia bernacchii. Journal of Comparative Physiology B 163(4): 265–270.

    Article  CAS  Google Scholar 

  • Martos, P., R. Reta & R. A. Guerrero, 2004. El ambiente físico de las costas marplatenses: su clima y sus aguas. In Boschi, E. E. & M. B. Cousseau (eds), La Vida entre Mareas: Vegetales y Animales de las Costas de Mar del Plata, Argentina. INIDEP, Mar del Plata, Argentina: 19–29.

    Google Scholar 

  • Mayfield, A. B. & R. D. Gates, 2007. Osmoregulation in anthozoan–dinoflagellate symbiosis. Comparative Biochemistry and Physiology Part A 147: 1–10.

    Article  CAS  Google Scholar 

  • Michiels, M. S., J. C. del Valle & A. A. López Mañanes, 2013. Effect of environmental salinity and dopamine injections on key digestive enzymes in hepatopancreas of the euryhaline crab Cyrtograpsus angulatus (Decapoda: Brachyura: Varunidae). Scientia Marina 77: 129–136.

    Article  CAS  Google Scholar 

  • Nichols, B. L., B. R. Hamaker, R. Quezada-Calvillo, N. F. Butte, J. Marini, C. C. Robayo-Torres, F. Jahoor, Z. Ao & E. E. Sterchi, 2009. Mucosal maltase–glucoamylase plays a crucial optima, role in starch digestion and prandial glucose homeostasis of mice. Journal of Nutrition 139: 684–690.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Olivera, E. G., D. L. Patronelli, M. O. Zamponi & M. A. Oppedisano, 2002. The marginal sphincter of the sea anemone Phymactis clematis (Anthozoa): transmission electron microscopic analysis. Revista de la Real Academia Galega de Ciencias 21: 31–38.

    Google Scholar 

  • Olivera, E. G., C. S. Terrero & D. L. Patronelli, 2012. Voltage-dependent calcium channels in marginal sphincter cells sarcolemma of the sea anemone Phymactis clematis (Actiniaria). Revista de la Real Academia Galega de Ciencias XXXI: 45–54.

    Google Scholar 

  • Oren, A., 1999. Bioenergetic aspects of halophilism. Microbiology and Molecular Biology Reviews 63: 334–348.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oren, A., 2002. Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. Journal of Industrial Microbiology and Biotechnology 28: 56–63.

    Article  CAS  PubMed  Google Scholar 

  • Palka, M. S., 2010. Stress resistance in an extreme environment: lessons learnt from a temperate symbiotic sea anemone. MSc thesis. University of Wellington, Victoria.

  • Patronelli, D. L., E. G. Olivera & M. O. Zamponi, 2005. Influence of the intertidal environment on muscle activity in different species of sea anemones (Actiniaria). Animal Biology 55(2): 101–109.

    Article  Google Scholar 

  • Piersman, T. & J. Drent, 2003. Phenotypic flexibility and the evolution of organismal design. Trends in Ecology and Evolution 18: 228–233.

    Article  Google Scholar 

  • Piniak, G. A., F. Lipschultz & J. McClelland, 2003. Assimilation and partitioning of prey nitrogen within two anthozoans and their endosymbiotic zooxanthellae. Marine Ecology Progress Series 262: 125–136.

    Article  Google Scholar 

  • Pinoni, S. A., 2009. Mecanismos de mantenimiento del medio interno en respuesta a estress environmental en crustaceos decapodos de interes regional. PhD thesis. Universidad Nacional de Mar del Plata, Mar del Plata, Argentina.

  • Pinoni, S. A. & A. A. López Mañanes, 2004. Alkaline phosphatase activity sensitive to environmental salinity and dopamine in muscle of the euryhaline crab Cyrtograpsus angulatus. Journal of Experimental Marine Biology and Ecology 307: 35–46.

    Article  CAS  Google Scholar 

  • Pinoni, S. A. & A. A. López Mañanes, 2008. Partial characterization and response under hyperregulating conditions of Na+-ATPase and levamisole-sensitive alkaline phosphatase activities in chela muscle of the euryhaline crab Cyrtograpsus angulatus. Scientia Marina 72: 15–24.

    CAS  Google Scholar 

  • Pinoni, S. A., O. Iribarne & A. A. López Mañanes, 2011. Between-habitat comparison of digestive enzymes activities and energy reserves in the SW Atlantic euryhaline burrowing crab Neohelice granulata. Comparative Biochemistry and Physiology Part A 158: 552–559.

    Article  CAS  Google Scholar 

  • Pinoni, S. A., S. Michiels & A. A. L. Mañanes, 2013. Phenotypic flexibility in response to environmental salinity in the euryhaline crab Neohelice granulata from the mudflat and the saltmarsh of a SW coastal lagoon. Marine Biology 160: 2647–2661.

    Article  Google Scholar 

  • Quezada-Calvillo, R., L. Sim, Z. Ao, B. R. Hamaker, A. Quaroni, G. D. Brayer, E. E. Sterchi, C. C. Robayo-Torres, D. R. Rose & B. L. Nichols, 2008. Luminal starch substrate ‘‘brake’’ on maltase–glucoamylase activity is located within the glucoamylase subunit. Journal of Nutrition 138: 685–692.

    CAS  PubMed  Google Scholar 

  • Romano, N. & C. Zeng, 2012. Osmoregulation in decapod crustaceans: implications to aquaculture productivity, methods for potential improvement and interactions with elevated ammonia exposure. Aquaculture 334–337: 12–23.

    Article  CAS  Google Scholar 

  • Sánchez, S. L. F. & F. R. Momo, 2013. Intertidal food webs in rocky shores: topology and Energetics. Oceanography 1: 3.

    Google Scholar 

  • Shick, J. M., 1991. A Functional Biology of Sea Anemones. Chapman & Hall, New York.

    Book  Google Scholar 

  • Somero, G. N., 2002. Thermal physiology and vertical zonation of intertidal animals: optima, limits and cost of living. Integrative and Comparative Biology 42: 780–789.

    Article  PubMed  Google Scholar 

  • Somero, G. N., 2010. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. Journal of Experimental Biology 213: 912–920.

    Article  CAS  PubMed  Google Scholar 

  • Tattersal, G. J., C. E. Cooper, B. J. Sinclair, P. C. Withers, P. A. Fields, F. Seebache & S. K. Maloney, 2012. Coping with thermal challenges: physiological adaptations to environmental temperatures. Comprehensive Physiology 2: 2151–2202.

    Google Scholar 

  • Van Praët, M., 1982a. Activetes amylasiques et proteasiques chez les actinies, influence de l’alimentation sur les activites mesurees. CNEXO (Actes Collog.) 14: 221–230.

    Google Scholar 

  • Van Praët, M., 1982b. Amylase and trypsin- and chymotrypsin-like proteases from Actinia equina L. Their role in the nutrition of this sea anemone. Comparative Biochemistry and Physiology Part A 72(3): 523–528.

    Article  Google Scholar 

  • Van Praët, M., 1985. Nutrition of sea anemones. Advances in Marine Biology 22: 65–99.

    Article  Google Scholar 

  • Zamer, W. E. & R. J. Hoffamn, 1989. Allozymes of glucose-6-phosphate isomerase differentially modulate pentose-shunt metabolism in the sea anemone Metridium senile. Proceeding of the National Academy of Sciences 86: 2737–2741.

    Article  CAS  Google Scholar 

  • Zamponi, M. O., 2007. El sistema mesoendoesqueletal en anémonas de mar (Cnidaria, Hexacorallia, Actiniaria). Revista de la Real Academia Galega de Ciencias 26(43): 52.

    Google Scholar 

  • Zamponi, M. O., 2011. Dispersión de Cnidaria: comunidad marina pleuston y comunidad marina bentos. Revista de la Real Academia Galega de Ciencias XXX: 91–112.

    Google Scholar 

  • Zamponi, M. O. & M. I. Deserti, 2009. Análisis comparativo entre las morfologías y ecologías de las formas pólipos (Cnidaria, Hydrozoa, Anthozoa) similares en hábitats disímiles. Revista de la Real Academia Galega de Ciencias XXVIII: 37–69.

    Google Scholar 

  • Zar, J. H., 1999. Biostatistical Analysis, 4th ed. Prentice-Hall Inc, Upper Saddle River, New Jersey. (662 pages).

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by Grants from the University of Mar del Plata, Argentina and from the Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET) (PIP OO21/11). We dedicated this work to the memory of Dra. Adriana Excoffon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandra Antonia López Mañanes.

Additional information

Guest editors: Yehuda Benayahu, Oren Levy and Tamar Lotan / Coelenterate Biology: Advanced Studies on Cnidaria and Ctenophora

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

del Valle, J.C., Acuña, F.H. & López Mañanes, A.A. Digestive flexibility in response to environmental salinity and temperature in the non-symbiotic sea anemone Bunodosoma zamponii . Hydrobiologia 759, 189–199 (2015). https://doi.org/10.1007/s10750-015-2239-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2239-8

Keywords

  • Intertidal
  • Phenotypic flexibility
  • Non-symbiotic anemones
  • Bunodosoma zamponii
  • Mesenterial filaments
  • Digestive enzymes