Skip to main content
Log in

Decadal longevity and slow growth rates in the deep-water sea pen Halipteris finmarchica (Sars, 1851) (Octocorallia: Pennatulacea): implications for vulnerability and recovery from anthropogenic disturbance

  • COELENTERATE BIOLOGY
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Growth rates and longevity are key factors in assessing the vulnerability of many invertebrates to anthropogenic disturbance. Sea pens are benthic invertebrates frequently entrained as fisheries bycatch, but whose growth (recovery) rates are poorly known. Here, longevity and growth rates were estimated for the deep-water sea pen Halipteris finmarchica from the Northwest Atlantic and compared to those published for Halipteris willemoesi from the Bering Sea. Axes were cross sectioned to visualise growth rings and estimate longevity and growth rates. Chronology of growth rings was examined with trace element microanalysis of Sr/Ca, Mg/Ca, Ba/Ca and Na/Ca in the axis using Secondary Ion Mass Spectrometry. The relationship between growth rates and environmental variables was investigated. The number of rings ranged from 13 to 22 among 26 colonies. Trace element microanalysis yielded a number of elemental ratio peaks comparable to the number of rings visually determined. Diametric growth rates were significantly smaller than those published for H. willemoesi, while linear growth rates (extension in height) were not different. No significant relationships were detected between growth rates and environmental variables for H. finmarchica. Our data suggest that H. finmarchica is a slow-growing, relatively long-lived organism whose recovery from damage can take over 20 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Anthony, K. R. N., S. R. Connolly & B. L. Willis, 2002. Comparative analysis of energy allocation to tissue and skeletal growth in corals. Limnology and Oceanography 47: 1417–1429.

    Article  Google Scholar 

  • Aranha, R., E. Edinger, G. Layne & G. Piercey, 2014. Growth rate variation and potential paleoceanographic proxies in Primnoa pacifica: insights from high-resolution trace element microanalysis. Deep Sea Research Part II 99: 213–226.

    Article  CAS  Google Scholar 

  • Arendt, J., 1997. Adaptive intrinsic growth rates: an integration across taxa. Quarterly Review of Biology 72: 149–177.

    Article  Google Scholar 

  • Baillon, S., J. Hamel, V. E. Wareham & A. Mercier, 2012. Deep cold-water corals as nurseries for fish larvae. Frontiers in Ecology and the Environment 10: 351–356.

    Article  Google Scholar 

  • Baillon, S., J. Hamel & A. Mercier, 2014. Protracted oogenesis and annual reproductive periodicity in the deep-sea pennatulacean Halipteris finmarchica (Anthozoa Octocorallia). Marine Ecology. doi:10.1111/maec.12236.

    Google Scholar 

  • Baker, K. D., V. E. Wareham, P. V. R. Snelgrove, R. L. Haedrich, D. A. Fifield, E. N. Edinger & K. D. Gilkinson, 2012. Distributional patterns of deep-sea coral assemblages in three submarine canyons off Newfoundland, Canada. Marine Ecology Progress Series 445: 235–249.

    Article  Google Scholar 

  • Bavestrello, G., R. Cattaneo-Vietti, C. G. Di Camillo & M. Bo, 2012. Helicospiral growth in the whip black coral Cirrhipathes sp. (Antipatharia, Antipathidae). The Biological Bulletin 222: 17–25.

    PubMed  Google Scholar 

  • Birkeland, C., 1974. Interactions between a sea pen and seven of its predators. Ecological Monographs 44: 211–232.

    Article  Google Scholar 

  • Bo, M., C. G. Di Camillo, A. M. Addamo, L. Valisano & G. Bavestrello, 2009. Growth strategies of whip black corals (Cnidaria: Antipatharia) in the Bunaken Marine Park (Celebes Sea, Indonesia). Marine Biodiversity Records 2.

  • Boyer, T. P., J. I. Antonov, O. K. Baranova, H. E. Garcia, D. R. Johnson, R. A. Locarnini, A. V. Mishonov, D. Seidov, I. V. Smolyar & M. M. Zweng, 2009. World Ocean Database 2009, Chapter 1: Introduction, NOAA Atlas NESDIS 66. U.S. Gov. Printing Office, Washington, DC.

    Google Scholar 

  • Brahmi, C., C. Kopp, I. Domart-Coulon, J. Stolarski & A. Meibom, 2012. Skeletal growth dynamics linked to trace-element composition in the scleractinian coral Pocillopora damicornis. Geochimica et Cosmochimica Acta 99: 146–158.

    Article  CAS  Google Scholar 

  • Brodeur, R. D., 2001. Habitat-specific distribution of Pacific ocean perch (Sebastes alutus) in Pribilof Canyon, Bering Sea. Continental Shelf Research 21: 207.

    Article  Google Scholar 

  • Brooke, S. & C. Young, 2009. In situ measurement of survival and growth of Lophelia pertusa in the northern Gulf of Mexico. Marine Ecology Progress Series 397: 153–161.

    Article  Google Scholar 

  • Buhl-Mortensen, P. & L. Buhl-Mortensen, 2014. Diverse and vulnerable deep-water biotopes in the Hardangerfjord. Marine Biology Research 10: 253–267.

    Article  Google Scholar 

  • Buhl-Mortensen, L., A. Vanreusel, A. J. Gooday, L. A. Levin, I. G. Priede, P. Buhl-Mortensen, H. Gheerardyn, N. J. King & M. Raes, 2010. Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Marine Ecology 31: 21–50.

    Article  Google Scholar 

  • Campana, S. E., 1997. Use of radiocarbon from nuclear fallout as a dated marker in the otoliths of Haddock Melanogrammus aeglefinus. Marine Ecology Progress Series 150: 49–56.

    Article  Google Scholar 

  • Cardoso, J. F. M. F., S. Santos, J. I. Witte, R. Witbaard, H. W. van der Veer & J. P. Machado, 2013. Validation of the seasonality in growth lines in the shell of Macoma balthica using stable isotopes and trace elements. Journal of Sea Research 82: 93–102.

    Article  Google Scholar 

  • Chang, W., K. Chi, T. Fan & C. Dai, 2007. Skeletal modification in response to flow during growth in colonies of the sea whip, Junceella fragilis. Journal of Experimental Marine Biology and Ecology 347: 97–108.

    Article  Google Scholar 

  • Collins, M. J., E. R. Waite & A. C. T. van Duin, 1999. Predicting protein decomposition: the case of aspartic–acid racemization kinetics. Philosophical Transactions of the Royal Society of London Series B 354: 51–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cordes, E. E., J. W. Nybakken & G. VanDykhuizen, 2001. Reproduction and growth of Anthomastus ritteri (Octocorallia: Alcyonacea) from Monterey Bay, California, USA. Marine Biology 138: 491–501.

    Article  Google Scholar 

  • Corrège, T., 2006. Sea surface temperature and salinity reconstruction from coral geochemical tracers. Palaeogeography, Palaeoclimatology, Palaeoecology 232: 408–428.

    Article  Google Scholar 

  • Davies, A. J., J. M. Roberts & J. Hall-Spencer, 2007. Preserving deep-sea natural heritage: emerging issues in offshore conservation and management. Biological Conservation 138: 299–312.

    Article  Google Scholar 

  • de Villiers, S., B. K. Nelson & A. R. Chivas, 1995. Biological controls on coral Sr/Ca and δ18O reconstructions of sea surface temperatures. Science 269: 1247–1249.

    Article  PubMed  Google Scholar 

  • Durán Muñoz, P., M. Sayago-Gil, T. Patrocinio, M. González-Porto, F. J. Murillo, M. Sacau, E. González, G. Fernández & A. Gago, 2012. Distribution patterns of deep-sea fish and benthic invertebrates from trawlable grounds of the Hatton Bank, north-east Atlantic: effects of deep-sea bottom trawling. Journal of the Marine Biological Association of the United Kingdom 92: 1509–1524.

    Article  Google Scholar 

  • Edinger, E., K. Baker, R. Devillers & V. Wareham, 2007. Coldwater Corals off Newfoundland and Labrador: Distribution and Fisheries Impacts. World Wildlife Fund Canada, Toronto.

    Google Scholar 

  • Edinger, E. N., K. Azmy, W. Diegor & P. R. Siregar, 2008. Heavy metal contamination from gold mining recorded in Porites lobata skeletons, Buyat-Ratototok district, North Sulawesi, Indonesia. Marine Pollution Bulletin 56: 1553–1569.

    Article  CAS  PubMed  Google Scholar 

  • Elsdon, T. S. & B. M. Gillanders, 2004. Fish otolith chemistry influenced by exposure to multiple environmental variables. Journal of Experimental Marine Biology and Ecology 313: 269–284.

    Article  CAS  Google Scholar 

  • Franc, S., P. W. Ledger & R. Garrone, 1985. Structural variability of collagen fibers in the calcareous axial rod of a sea pen. Journal of Morphology 184: 75–84.

    Article  Google Scholar 

  • Gagan, M. K., L. K. Ayliffe, J. W. Beck, J. E. Cole, E. R. M. Druffel, R. B. Dunbar & D. P. Schrag, 2000. New views of tropical paleoclimates from corals. Quaternary Science Reviews 19: 45–64.

    Article  Google Scholar 

  • Gage, J. D. & P. A. Tyler, 1991. Deep-sea Biology: A Natural History of Organisms at the Deep-Sea Floor. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Gass, S. E. & J. M. Roberts, 2006. The occurrence of the cold-water coral Lophelia pertusa (Scleractinia) on oil and gas platforms in the North Sea: colony growth, recruitment and environmental controls on distribution. Marine Pollution Bulletin 52: 549–559.

    Article  CAS  PubMed  Google Scholar 

  • Goffredo, S., E. Caroselli, G. Mattioli & F. Zaccanti, 2010. Growth and population dynamic model for the non-zooxanthellate temperate solitary coral Leptopsammia pruvoti (Scleractinia, Dendrophylliidae). Marine Biology 157: 2603–2612.

    Article  Google Scholar 

  • Gooday, A., 2002. Biological responses to seasonally varying fluxes of organic matter to the ocean floor: a review. Journal of Oceanography 58: 305–332.

    Article  CAS  Google Scholar 

  • Grange, K. R., 1985. Distribution, standing crop, population structure, and growth rates of black coral in the southern fiords of New Zealand. New Zealand Journal of Marine and Freshwater Research 19: 467–475.

    Article  Google Scholar 

  • Greathead, C., J. M. González-Irusta, J. Clarke, P. Boulcott, L. Blackadder, A. Weetman & P. J. Wright, 2015. Environmental requirements for three sea pen species: relevance to distribution and conservation. ICES Journal of Marine Science 72: 576–586.

    Article  Google Scholar 

  • Hamel, J., Z. Sun & A. Mercier, 2010. Influence of size and seasonal factors on the growth of the deep-sea coral Flabellum alabastrum in mesocosm. Coral Reefs 29: 521–525.

    Article  Google Scholar 

  • Hart, S. R. & A. L. Cohen, 1996. An ion probe study of annual cycles of Sr/Ca and other trace elements in corals. Geochimica et Cosmochimica Acta 60: 3075–3084.

    Article  CAS  Google Scholar 

  • Head, E. & P. Pepin, 2009. Long-term variability in phytoplankton and zooplankton abundance in the Northwest Atlantic in Continuous Plankton Recorder (CPR) samples. DFO Can. Sci. Advis. Sec. Res. Doc. 2009/063: vi + 29 pp.

  • Heino, M. & V. Kaitala, 1999. Evolution of resource allocation between growth and reproduction in animals with indeterminate growth. Journal of Evolutionary Biology 12: 423–429.

    Article  Google Scholar 

  • Jull, A. J. T., 2006. Dating techniques. In Elias, S. A. (ed.), Encyclopedia of Quaternary science. Elsevier, Amsterdam: 454–459.

    Google Scholar 

  • Kabacoff, R., 2011. R in Action: Data Analysis and Graphics with R. Manning, Shelter Island, NY.

    Google Scholar 

  • Kalish, J. M., 1989. Otolith microchemistry: validation of the effects of physiology, age and environment on otolith composition. Journal of Experimental Marine Biology and Ecology 132: 151–178.

    Article  CAS  Google Scholar 

  • Kalish, J. M., 1992. Formation of a stress-induced chemical check in fish otoliths. Journal of Experimental Marine Biology and Ecology 162: 265–277.

    Article  CAS  Google Scholar 

  • Kaufmann, K., 1981. Fitting and using growth curves. Oecologia 49: 293–299.

    Article  Google Scholar 

  • Kenchington, E., F. Murillo, C. Lirette, M. Sacau, M. Koen-Alonso, A. Kenny, N. Ollerhead, V. Wareham & L. Beazley, 2014. Kernel density surface modelling as a means to identify significant concentrations of vulnerable marine ecosystem indicators. PLoS One 9: e109365.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kozłowski, J., 1992. Optimal allocation of resources to growth and reproduction: implications for age and size at maturity. Trends in Ecology & Evolution 7: 15–19.

    Article  Google Scholar 

  • Kükenthal, W., 1915. Pennatularia. Das Tierreich. Verlag von R. Friedlander und Sohn, Berlin.

    Google Scholar 

  • Kulka, D. W. & D. Pitcher, 2002. Spatial and temporal patterns in trawling activity in the Canadian Atlantic and Pacific. ICES Journal of Marine Science CM 2001/R:02.

  • Ledger, P. W. & S. Franc, 1978. Calcification of collagenous axial skeleton of Veretillum cynomorium Pall (Cnidaria Pennatulacea). Cell and Tissue Research 192: 249–266.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, J. B., 1982. Feeding behaviour and feeding ecology of the Octocorallia (Coelenterata: Anthozoa). Journal of Zoology 196: 371–384.

    Article  Google Scholar 

  • Lindholm, J., M. Kelly, D. Kline & J. de Marignac, 2008. Patterns in the local distribution of the sea whip, Halipteris willemoesi, in an area impacted by mobile fishing gear. Marine Technology Society Journal 42: 64–68.

    Article  Google Scholar 

  • Lutz, R. A. & D. C. Rhoads, 1980. Growth patterns within the molluscan shell: an overview. In Rhoads, D. C. & R. A. Lutz (eds), Skeletal Growth of Aquatic Organisms: Biological Records of Environmental Change. Plenum Press, New York: 203–248.

    Chapter  Google Scholar 

  • Malecha, P. W. & R. P. Stone, 2009. Response of the sea whip Halipteris willemoesi to simulated trawl disturbance and its vulnerability to subsequent predation. Marine Ecology Progress Series 388: 197–206.

    Article  Google Scholar 

  • Marschal, C., J. Garrabou, J. Harmelin & M. Pichon, 2004. A new method for measuring growth and age in the precious red coral Corallium rubrum (L.). Coral Reefs 23: 423–432.

    Article  Google Scholar 

  • Meibom, A., S. Mostefaoui, J. Cuif, Y. Dauphin, F. Houlbreque, R. Dunbar & B. Constantz, 2007. Biological forcing controls the chemistry of reef-building coral skeleton. Geophysical Research Letters. doi:10.1029/2006GL028657.

    Google Scholar 

  • Mistri, M., 1995. Gross morphometric relationships and growth in the Mediterranean gorgonian Paramuricea clavata. Bolletino Di Zoologia 62: 5–8.

    Article  Google Scholar 

  • Mistri, M. & V. U. Ceccherelli, 1993. Growth of the Mediterranean gorgonian Lophogorgia ceratophyta (L., 1758). Marine Ecology 14: 329–340.

    Article  Google Scholar 

  • Mistri, M. & V. CeccherelliI, 1994. Growth and secondary production of the Mediterranean gorgonian Paramuricea clavata. Marine Ecology Progress Series 103: 291–296.

    Article  Google Scholar 

  • Morato, T., R. Watson, T. J. Pitcher & D. Pauly, 2006. Fishing down the deep. Fish and Fisheries 7: 24–34.

    Article  Google Scholar 

  • Mosegaard, H., H. Svedäng & K. Taberman, 1988. Uncoupling of somatic and otolith growth rates in Arctic Char (Salvelinus alpinus) as an effect of differences in temperature response. Canadian Journal of Fisheries and Aquatic Sciences 45: 1514–1524.

    Article  Google Scholar 

  • Murillo, F. J., M. P. Durán, A. Altuna & A. Serrano, 2011. Distribution of deep-water corals of the Flemish Cap, Flemish Pass, and the Grand Banks of Newfoundland (Northwest Atlantic Ocean): interaction with fishing activities. ICES Journal of Marine Science 68: 319–332.

    Article  Google Scholar 

  • Musgrave, E. M., 1909. Experimental observations on the organs of circulation and powers of locomotion in pennatulids. Quarterly Journal of Microscopical Science 54: 443–482.

    Google Scholar 

  • Palmer, A. R., 1981. Do carbonate skeletons limit the rate of body growth? Nature 292: 150–152.

    Article  Google Scholar 

  • Prouty, N. G., E. B. Roark, N. A. Buster & S. W. Ross, 2011. Growth rate and age distribution of deep-sea black corals in the Gulf of Mexico. Marine Ecology Progress Series 423: 101–115.

    Article  Google Scholar 

  • Quinn, G. P. & M. J. Keough, 2002. Experimental design and data analysis for biologists. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Risk, M. J., J. M. Heikoop, M. G. Snow & R. Beukens, 2002. Lifespans and growth patterns of two deep-sea corals: Primnoa resedaeformis and Desmophyllum cristagalli. Hydrobiologia 471: 125–131.

    Article  Google Scholar 

  • Roark, E. B., T. P. Guilderson, S. Flood-Page, R. B. Dunbar, B. L. Ingram, S. J. Fallon & M. McCulloch, 2005. Radiocarbon-based ages and growth rates of bamboo corals from the Gulf of Alaska. Geophysical Research Letters 32: L04606.

    Article  CAS  Google Scholar 

  • Roark, E. B., T. P. Guilderson, R. B. Dunbar, S. J. Fallon & D. A. Mucciarone, 2009. Extreme longevity in proteinaceous deep-sea corals. Proceedings of the National Academy of Sciences of the United States of America 106: 5204–5208.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roberts, S. & M. Hirshfield, 2004. Deep-sea corals: out of sight, but no longer out of mind. Frontiers in Ecology and the Environment 2: 123–130.

    Article  Google Scholar 

  • Roberts, J. M., A. Wheeler, A. Freiwald & S. Cairns, 2009. Cold-water corals: the biology and geology of deep-sea coral habitats. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Roberts, J. J., B. D. Best, D. C. Dunn, E. A. Treml & P. N. Halpin, 2010. Marine geospatial ecology tools: an integrated framework for ecological geoprocessing with ArcGIS, Python, R, MATLAB, and C++. Environmental Modelling & Software 25: 1197–1207.

    Article  Google Scholar 

  • Robinson, L. F., J. F. Adkins, N. Frank, A. C. Gagnon, N. G. Prouty, E. Brendan Roark & T. V. de Flierdt, 2014. The geochemistry of deep-sea coral skeletons: a review of vital effects and applications for palaeoceanography. Deep Sea Research Part II 99: 184–198.

    Article  CAS  Google Scholar 

  • Rosenberg, G. D., 1980. An ontogenetic approach to the environmental significance of bivalve shell chemistry. In Rhoads, D. C. & R. A. Lutz (eds), Skeletal Growth of Aquatic Organisms: Biological Records of Environmental Change. Plenum Press, New York: 133–168.

    Chapter  Google Scholar 

  • RDC Team, 2008. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Schlitzer, R., 2014. Ocean Data View. http://odv.awi.de.

  • Schneider, C. A., W. S. Rasband & K. W. Eliceiri, 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9: 671–675.

    Article  CAS  PubMed  Google Scholar 

  • Sebens, K. P., 1987. The ecology of indeterminate growth in animals. Annual Review of Ecology and Systematics 18: 371–407.

    Article  Google Scholar 

  • Sherwood, O. A. & E. N. Edinger, 2009. Ages and growth rates of some deep-sea gorgonian and antipatharian corals of Newfoundland and Labrador. Canadian Journal of Fisheries and Aquatic Sciences 66: 142–152.

    Article  Google Scholar 

  • Sherwood, O. A., D. B. Scott, M. J. Risk & T. P. Guilderson, 2005a. Radiocarbon evidence for annual growth rings in the deep-sea octocoral Primnoa resedaeformis. Marine Ecology Progress Series 301: 129–134.

    Article  Google Scholar 

  • Sherwood, O., J. Heikoop, D. Sinclair, D. Scott, M. Risk, C. Shearer & K. Azetsu-Scott, 2005b. Skeletal Mg/Ca in Primnoa resedaeformis: relationship to temperature? In Freiwald, A. & J. M. Roberts (eds), Cold-Water Corals and Ecosystems. Springer, Berlin: 1061–1079.

    Chapter  Google Scholar 

  • Sinclair, D. J., B. Williams, G. Allard, B. Ghaleb, S. Fallon, S. W. Ross & M. Risk, 2011. Reproducibility of trace element profiles in a specimen of the deep-water bamboo coral Keratoisis sp. Geochimica et Cosmochimica Acta 75: 5101–5121.

    Article  CAS  Google Scholar 

  • Soong, K., 2005. Reproduction and colony integration of the sea pen Virgularia juncea. Marine Biology 146: 1103–1109.

    Article  Google Scholar 

  • Stolkowski, J., 1977. Magnesium in animal and human reproduction. Revue Canadienne de Biologie 36: 135–177.

    CAS  PubMed  Google Scholar 

  • Tentori, E., D. Allemand & R. Shepherd, 2004. Cell growth and calcification result from uncoupled physiological processes in the soft coral Litophyton arboreum. Marine Ecology Progress Series 276: 85–92.

    Article  CAS  Google Scholar 

  • Thresher, R. E., 2009. Environmental and compositional correlates of growth rate in deep-water bamboo corals (Gorgonacea; Isididae). Marine Ecology Progress Series 397: 187–196.

    Article  CAS  Google Scholar 

  • Troffe, P. M., C. D. Levings, G. E. Piercey & V. Keong, 2005a. Fishing gear effects and ecology of the sea whip (Halipteris willemoesi (Cnidaria: Octocorallia: Pennatulacea)) in British Columbia, Canada: preliminary observations. Aquatic Conservation 15: 523–533.

    Article  Google Scholar 

  • Troffe, P. M., C. D. Levings, G. E. Piercey & V. Keong, 2005b. Fishing gear effects and ecology of the sea whip (Halipteris willemoesi (Cnidaria: Octocorallia: Pennatulacea)) in British Columbia, Canada: preliminary observations. Aquatic Conservation 15: 523–533.

    Article  Google Scholar 

  • Vinogradov, G. M., 2000. Growth rate of the colony of a deep-water gorgonarian Chrysogorgia agassizi: in situ observations. Ophelia 53: 101–103.

    Article  Google Scholar 

  • Walker, T. & G. Bull, 1983. A newly discovered method of reproduction in gorgonian coral. Marine Ecology Progress Series 12: 137–143.

    Article  Google Scholar 

  • Wallace, S. & D. Suzuki Foundation, 2007. Dragging Our Assets : Toward An Ecosystem Approach to Bottom Trawling in Canada. David Suzuki Foundation, Vancouver, BC.

    Google Scholar 

  • Walther, B. D. & S. R. Thorrold, 2006. Water, not food, contributes the majority of strontium and barium deposited in the otoliths of a marine fish. Marine Ecology Progress Series 311: 125–130.

    Article  CAS  Google Scholar 

  • Walther, B. D., M. J. Kingsford, M. D. O’Callaghan & M. T. McCulloch, 2010. Interactive effects of ontogeny, food ration and temperature on elemental incorporation in otoliths of a coral reef fish. Environmental Biology of Fishes 89: 441–451.

    Article  Google Scholar 

  • Wareham, V. E., 2009. Updates on deep-sea coral distributions in the Newfoundland and Labrador and Arctic Regions, Northwest Atlantic. In Gilkinson, K. & E. Edinger (eds), The ecology of deep-sea corals of Newfoundland and Labrador waters: biogeography, life history, biogeochemistry, and relation to fishes. Canadian Technical Report on Fisheries Aquatic Sciences 2830: vi + 136 pp.

  • Wareham, V. E. & E. N. Edinger, 2007. Distribution of deep-sea corals in the Newfoundland and Labrador region, Northwest Atlantic Ocean. Bulletin of Marine Science 81: 289–313.

    Google Scholar 

  • Watanabe, S., A. Metaxas, J. Sameoto & P. Lawton, 2009. Patterns in abundance and size of two deep-water gorgonian octocorals, in relation to depth and substrate features off Nova Scotia. Deep Sea Research Part I 56: 2235–2248.

    Article  Google Scholar 

  • Watling, L., 2005. The global destruction of bottom habitats by mobile fishing gear. In Norse, E. A. & L. B. Crowder (eds), Marine Conservation Biology. Island Press, Washington, DC: 198–210.

    Google Scholar 

  • Watling, L. & E. A. Norse, 1998. Disturbance of the seabed by mobile fishing gear: a comparison to forest clearcutting. Conservation Biology 12: 1180–1197.

    Article  Google Scholar 

  • Weinbauer, M. G., F. Brandstätter & B. Velimirov, 2000. On the potential use of magnesium and strontium concentrations as ecological indicators in the calcite skeleton of the red coral (Corallium rubrum). Marine Biology 137: 801–809.

    Article  CAS  Google Scholar 

  • Williams, G. C., 1995. Living genera of sea pens (Coelenterata: Octocorallia: Pennatulacea): illustrated key and synopses. Zoological Journal of the Linnean Society 113: 93–140.

    Article  Google Scholar 

  • Wilson, M. T., A. H. Andrews, A. L. Brown & E. E. Cordes, 2002. Axial rod growth and age estimation of the sea pen, Halipteris willemoesi Kölliker. Hydrobiologia 471: 133–142.

    Article  Google Scholar 

  • Yesson, C., M. L. Taylor, D. P. Tittensor, A. J. Davies, J. Guinotte, A. Baco, J. Black, J. M. Hall-Spencer & A. D. Rogers, 2012. Global habitat suitability of cold-water octocorals. Journal of Biogeography 39: 1278–1292.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Glenn Piercey, Michael Shaffer, David Grant and Brian Loveridge (CREAIT, Memorial University of Newfoundland) for assistance with sectioning, polishing and trace element analysis (GP), Wanda Aylward (CREAIT, Memorial University of Newfoundland) for the X-ray diffraction analysis and Kent Gilkinson from Fisheries and Oceans Canada (DFO). We also thank the 8th International Conference on Coelenterate Biology committee for the registration fee reduction award to BMN. This manuscript was improved by the comments of two anonymous reviewers. Research is funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) (doctoral scholarship to BMN) and sponsored by the NSERC Canadian Healthy Oceans Network (CHONe)—a university-government partnership dedicated to biodiversity science for the sustainability of Canada’s three oceans.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bárbara de Moura Neves.

Additional information

Guest editors: Yehuda Benayahu, Oren Levy & Tamar Lotan / Coelenterate Biology: Advanced Studies on Cnidaria and Ctenophora.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10750_2015_2229_MOESM1_ESM.tif

Online Resource 1: Results from the X-ray diffraction analysis on the axis of Halipteris finmarchica (black), also showing how these values compare to magnesian calcite (red) and calcite (blue) (TIFF 9288 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neves, B.d.M., Edinger, E., Layne, G.D. et al. Decadal longevity and slow growth rates in the deep-water sea pen Halipteris finmarchica (Sars, 1851) (Octocorallia: Pennatulacea): implications for vulnerability and recovery from anthropogenic disturbance. Hydrobiologia 759, 147–170 (2015). https://doi.org/10.1007/s10750-015-2229-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2229-x

Keywords

Navigation