, Volume 753, Issue 1, pp 73–80 | Cite as

Response of a native endangered axolotl, Ambystoma mexicanum (Amphibia), to exotic fish predator

  • Guillermina Alcaraz
  • Xarini López-Portela
  • Cecilia Robles-Mendoza
Primary Research Paper


The axolotl (Ambystoma mexicanum) is a critically endangered and threatened species endemic of the Central Valley of Mexico. The population of this neotenic amphibian has declined in recent years as a result of habitat destruction, polluted waters, and the introduction of exotic species such as tilapia. We evaluated the antipredator response of predator-naïve axolotls to visual and chemical cues of the Nile tilapia (Oreochromis niloticus) and its foraging consequences. Axolotls decreased their activity and increased their use of refuge in the presence of combined chemical and visual cues from the predator. The axolotls seem to use their vision to confirm the level of risk perceived through chemical signals to modulate their antipredator response accordingly. The axolotls engaged in prey capture at a similar rate independent of the type of predator exposure. However, the efficiency of prey capture decreased in axolotls exposed to the chemical and the combined visual and chemical cues from the tilapia. The foraging costs to the axolotls induced by tilapia can ultimately affect their growth rate and size. The axolotls display antipredator behaviours to reduce the risk of predation by tilapia, which is a primary condition of coexistence with this exotic predator.


Antipredator response Amphibian Chemical cue Diet cue Foraging Refuge 



This research was funded by the Facultad de Ciencias, Universidad Nacional Autónoma de México, UNAM. We thank the staff of the vivarium of FES-Iztacala-UNAM for donating the axolotls and Karla Kruesi Cortés for assistance during the experiments.


  1. Álvarez del Villar, J. & L. Navarro, 1957. Los peces del Valle de México. Secretaría de Marina. Instituto Nacional de la Pesca e Industrias Conexas: 3–22.Google Scholar
  2. Amo, L., P. López & J. Martín, 2004. Wall lizards combine chemical and visual cues of ambush snake predators to avoid overestimating risk inside refuges. Animal Behaviour 67: 647–653.CrossRefGoogle Scholar
  3. Anver, M. R. & C. L. Pond, 1984. Biology and diseases of amphibians. In Fox, J. G., B. J. Cohen & F. M. Loew (eds), Laboratory Animal Medicine. Academic Press, New York: 427–447.CrossRefGoogle Scholar
  4. Armstrong, J. B., S. T. Duhon & G. M. Malacinski, 1989. Raising the axolotl in captivity. In Armstrong, J. B. & G. M. Malacinsky (eds), Developmental Biology of the Axolotl. Oxford University Press, New York: 220–227.Google Scholar
  5. Blancas-Arroyo, A. G., G. Figueroa-Lucero, I. A. Barriga-Sosa & J. L. Arredondo, 2003. Aportaciones al cultivo controlado del pez blanco, Chirostoma humboldtianum, Valenciennes 1835 (Pisces: Atherinopsidae). In Rojas, C. P. M. & C. D. Fuentes (eds), Historia y Avances del Cultivo de Pescado blanco. Instituto Nacional de la Pesca, SAGARPA, México, D.F. [available on internet at].
  6. Chivers, D. P., J. M. Kiesecker, M. T. Anderson, E. L. Wildy & A. R. Blaustein, 1996. Avoidance response of terrestrial salamander (Ambystoma macrodactylum) to chemical alarm cues. Journal of Chemical Ecology 22: 1709–1716.CrossRefPubMedGoogle Scholar
  7. Chivers, D. P. & R. J. F. Smith, 1998. Chemical alarm signalling in aquatic predator/prey systems: a review and prospectus. Ecoscience 5: 338–352.Google Scholar
  8. Contreras, V., E. Martínez-Meyer, E. Valiente & L. Zambrano, 2009. Recent decline and potential distribution in the last remnant area of the microendemic Mexican axolotl (Ambystoma mexicanum). Biological Conservation 142: 2881–2885.CrossRefGoogle Scholar
  9. DOF-Diario Oficial de la Federación, 2010. Norma Oficial Mexicana NOM-059-SEMARNAT-2010. Protección Ambiental Especies Nativas de México de Flora y Fauna Silvestres Categorías de Riesgo y Especificaciones para su Inclusión, Exclusión o Cambio Lista de Especies en Riesgo. Diario Oficial de la Federación, México.Google Scholar
  10. Eisthen, H. L. & D. Park, 2005. Chemical signals and vomeronasal system function in axolotl (Ambystoma mexicanum). In Mason, R., M. LeMaster & D. Müller-Schwarze (eds), Chemical Signals in Vertebrates. Springer, New York: 216–227.CrossRefGoogle Scholar
  11. Ferrari, M. C. O., A. Gonzalo, F. Messier & D. P. Chivers, 2007. Generalization of learned predator recognition: an experimental test and framework for future studies. Proceedings of the Royal Society, Biological Sciences 274:1853–1859.Google Scholar
  12. Fessehaye, Y., A. Kabir, H. Bovenhuis & H. Komen, 2006. Prediction of cannibalism in juvenile Oreochromis niloticus based on predator to prey weight ratio, and effects of age and stocking density. Aquaculture 255: 314–322.CrossRefGoogle Scholar
  13. Fitzpatrick, B. M., M. F. Benard & J. A. Fordyce, 2003. Morphology and escape performance of tiger salamander larvae (Ambystoma tigrinum mavortium). Journal of Experimental Zoology 2797A: 147–159.CrossRefGoogle Scholar
  14. Fitzsimmons, K., 2000. Tilapia aquaculture in Mexico. In Costa-Pierce, B. A. & J. E. Rakocy (eds), Tilapia Aquaculture in the Americas, Vol. 2. The World Aquaculture Society, Baton Rouge: 171–183.Google Scholar
  15. Fortes, R. S., F. J. Martínez, M. Villarroel & F. J. Sánchez-Vázquez, 2010. Daily feeding patterns and self-selection of dietary oil in Nile tilapia. Aquaculture Research 42: 157–160.CrossRefGoogle Scholar
  16. Ghirlanda, S. & M. Enquist, 2003. A century of generalisation. Animal Behavior 66: 15–36.Google Scholar
  17. Gonzálo, A., P. López & J. Martín, 2007. Iberian green frog tadpoles may learn to recognize novel predators from chemical alarm cues of conspecifics. Animal Behavior 74: 447–453.CrossRefGoogle Scholar
  18. Graue, W. V., 1998. Estudio genético y demográfico de la población del anfibio Ambystoma mexicanum (Caudata: Ambystomidae) del Lago de Xochimilco. Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, México.Google Scholar
  19. Hartman, E. J. & M. V. Abrahams, 2000. Sensory compensation and the detection of predators: the interaction between chemical and visual information. Proceedings of the Royal Society, Biological Sciences 267: 571–575.CrossRefGoogle Scholar
  20. Hickman, C. R., M. D. Stone & A. Mathis, 2004. Priority use of chemical over visual cues for detection of predators by graybelly salamanders Eurycea multiplicata griseogaster. Herpetologica 60: 203–210.CrossRefGoogle Scholar
  21. IUCN, 2014. The IUCN Red List of Threatened Species [available on internet at].
  22. Jara, F. & M. Perotti, 2010. Risk of predation and behavioural response in three anuran species: influence of tadpole size and predator type. Hydrobiologia 644: 313–324.CrossRefGoogle Scholar
  23. Johnson, E., P. Bierzychudek & H. Whiteman, 2003. Potential of prey size and type to affect foraging asymmetries in tiger salamander (Ambystoma tigrinum nebulosum) larvae. Canadian Journal of Zoology 81: 1726–1735.CrossRefGoogle Scholar
  24. Kats, L. B. & L. M. Dill, 1998. The scent of death: chemo-sensory assessment of predation risk by prey animals. Ecoscience 5: 361–394.Google Scholar
  25. Kats, L. B. & R. P. Ferrer, 2003. Alien predators and amphibian declines: review of two decades of science and the transition to conservation. Diversity and Distribution 9: 99–110.CrossRefGoogle Scholar
  26. Kelley, J. L. & A. E. Magurran, 2003. Learned predator recognition and antipredator responses in fishes. Fish and Fisheries 4: 216–226.CrossRefGoogle Scholar
  27. Kerby, J. L., A. J. Hart & A. Storfer, 2011. Combined effect of virus, pesticide, and predator cue on the larval tiger salamander (Ambystoma tigrinum). EcoHealth 8: 46–54.CrossRefPubMedGoogle Scholar
  28. Kiesecker, J. M., 2003. Invasive species as a global problem: towards understanding the worldwide decline of amphibians. In Semlitsh, R. D. (ed), Amphibian Conservation. Smithsonian Press, Washington, DC: 113–126.Google Scholar
  29. Knapp, R. A. & K. R. Matthews, 2000. Non-native fish introductions and the decline of the mountain yellow-legged frog from within protected areas. Conservation Biology 14: 428–438.CrossRefGoogle Scholar
  30. Landberg, T. & E. Azizi, 2010. Ontogeny of escape swimming performance in the spotted salamander. Functional Ecology 24: 576–587.CrossRefGoogle Scholar
  31. Lindquist, S. B. & M. D. Bachmann, 1982. The role of visual and olfactory cues in the prey catching behavior of the tiger salamander, Ambystoma tigrinum. Copeia 1982: 81–90.Google Scholar
  32. Mathis, A. & F. Vincent, 2000. Differential use of visual and chemical cues in predator recognition and threat-sensitive predator-avoidance responses by larval newts (Notophthalmus viridescens). Canadian Journal of Zoology 78: 1646–1652.CrossRefGoogle Scholar
  33. Milinski, M. & Y. R. Heller, 1978. Influence of a predator on the optimal foraging of sticklebacks (Gasterosteus aculeatus L.). Nature 273: 642–644.CrossRefGoogle Scholar
  34. Mundy, B., 1997. Simple brine shrimp hatchery. In Duhon, S. T. (ed), Compendium of Axolotl Husbandry Methods. Axolotl Newsletter 25. Indiana University Axolotl Colony, Bloomington.Google Scholar
  35. Münz, H. & B. Claas, 1991. Activity of lateral line efferent in the axolotl Ambystoma mexicanum. Journal of Comparative Physiology 169: 461–469.Google Scholar
  36. Njiru, M., J. Okeyo-Owuor, J. Muchiri & G. Cowx, 2004. Shifts in the food of Nile tilapia, Oreochromis niloticus (L.) in Lake Victoria, Kenya. African Journal of Ecology 42: 163–170.CrossRefGoogle Scholar
  37. Nunes, A. L., G. Orizaola, A. Laurila & R. Rebelo, 2014. Rapid evolution of constitutive and inducible defenses against an invasive predator. Ecology 95: 1520–1530.CrossRefPubMedGoogle Scholar
  38. Pearson, K. J. & C. P. Goater, 2009. Effects of predaceous and nonpredaceous introduced fish on the survival, growth, and antipredation behaviours of long-toed salamanders. Canadian Journal of Zoology 87: 948–955.CrossRefGoogle Scholar
  39. Pease, K. M., 2011. Rapid evolution of anti-predator defenses in Pacific tree frog tadpoles exposed to invasive predatory crayfish. Doctoral dissertation. University of California, Los Angeles.Google Scholar
  40. Pilliod, D. S., R. S. Arkle & B. A. Maxel, 2013. Persistence and extirpation in invaded landscapes: patch characteristics and connectivity determine effects of non-native predatory fish on native salamanders. Biological Invasions 15: 671–685.CrossRefGoogle Scholar
  41. Richardson, J. L., 2001. A comparative study of activity levels in larval anurans and response to the presence of different predators. Behavioral Ecology 12: 51–58.CrossRefGoogle Scholar
  42. Robles, M. M. B., 2011. Ritmo circadiano de actividad locomotriz en el ajolote mexicano juvenil Ambystoma mexicanum: sincronización y libre curso. Thesis, Facultad de Ciencias, Universidad Nacional Autónoma de México.Google Scholar
  43. Robles-Mendoza, C., C. E. Basilio & R. C. P. Vanegas, 2009. Maintenance media for the axolotl Ambystoma mexicanum juveniles (Amphibia: Caudata). Hidrobiológica 19: 205–210.Google Scholar
  44. Secor, S. M. & M. Boehm, 2006. Specific dynamic action of ambystomatid salamanders and the effects of meal size, meal type, and body temperature. Physiological and Biochemical Zoology 79: 720–735.CrossRefPubMedGoogle Scholar
  45. Semlitsch, R. D., 1987. Interactions between fish and salamander larvae. Cost of predator avoidance or competition? Oecologia 72: 481–486.CrossRefGoogle Scholar
  46. Sih, A., D. I. Bolnick, B. Luttbeg, J. L. Orrock, S. D. Peacor, L. M. Pintor, E. Preisser, J. S. Rehage & J. R. Vonesh, 2010. Predator-prey naïveté, antipredator behavior, and the ecology of predator invasions. Oikos 119: 610–621.CrossRefGoogle Scholar
  47. Skelly, D. K., 1992. Field evidence for a cost of behavioural antipredator response in a larval amphibian. Ecology 73: 704–708.CrossRefGoogle Scholar
  48. Skelly, D. K., 1994. Activity level and the susceptibility of anuran larvae to predation. Animal Behaviour 47: 465–468.CrossRefGoogle Scholar
  49. Stauffer, H. P. & R. D. Semlitsch, 1993. Effects of visual, chemical and tactile cues of fish on the behavioural responses of tadpoles. Animal Behaviour 46: 355–364.CrossRefGoogle Scholar
  50. Trujillo-Jiménez, P. & E. V. Espinosa de los Monteros, 2006. La ecología alimentaria del pez endémico Girardinichthys multiradiatus (Cyprinidontiformes: Goodeidae) en el Parque Nacional Lagunas de Zempoala, México. Revista de Biología Tropical 54: 1247–1255.CrossRefPubMedGoogle Scholar
  51. Valiente, R. E. L, 2006. Efecto de las especies introducidas en Xochimilco para la rehabilitación del hábitat del ajolote (Ambystoma mexicanum). Thesis, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, México.Google Scholar
  52. Vera, L. M., L. Cairns, F. J. Sánchez-Vázquez & H. Migaud, 2009. Circadian rhythms of locomotor activity in the Nile tilapia Oreochromis niloticus. Chronobiology International 26: 666–681.CrossRefPubMedGoogle Scholar
  53. Walls, S. C., 1995. Differential vulnerability to predation and refuge use in competing larval salamanders. Oecologia 101: 86–93.CrossRefGoogle Scholar
  54. Werner, E. & B. Anholt, 1993. Ecological consequences of the trade-off between growth and mortality rates mediated by foraging activity. American Naturalist 142: 242–272.CrossRefPubMedGoogle Scholar
  55. Ydenberg, R. C. & L. M. Dill, 1986. The economics of fleeing from predators. Advances in the Study of Behavior 16: 229–249.CrossRefGoogle Scholar
  56. Zambrano, L., V. Contreras, M. Mazari-Hiriart & A. Zarco-Arista, 2009. Spatial heterogeneity of water quality in a highly degraded tropical freshwater ecosystem. Environmental Management 43: 249–263.CrossRefPubMedGoogle Scholar
  57. Zambrano, L., E. Valiente & M. J. Zanden, 2010. Food web overlap among native axolotl (Ambystoma mexicanum) and two exotic fishes: carp (Cyprinus carpio) and tilapia (Oreochromis niloticus) in Xochimilco, Mexico City. Biological Invasions 12: 3061–3069.CrossRefGoogle Scholar
  58. Zerba, K. E. & J. P. Collins, 1992. Spatial heterogeneity and individual variation in diet of an aquatic top predator. Ecology 73: 268–279.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Guillermina Alcaraz
    • 1
  • Xarini López-Portela
    • 1
  • Cecilia Robles-Mendoza
    • 2
  1. 1.Laboratorio de Ecofisiología, Departamento de Ecología y Recursos Naturales, Facultad de CienciasUniversidad Nacional Autónoma de MéxicoMexicoMexico
  2. 2.Unidad Multidisciplinaria de Docencia e Investigación-Sisal, Facultad de CienciasUniversidad Nacional Autónoma de MéxicoSisalMexico

Personalised recommendations