Hydrobiologia

, Volume 753, Issue 1, pp 31–45 | Cite as

Community assembly of rotifers based on morphological traits

Primary Research Paper

Abstract

Trait patterns can give insights into how communities assemble under a functional perspective. We constructed a rotifer trait matrix related to food acquisition and predator defence and calculated Rao’s quadratic entropy (Q) as an index of functional diversity to investigate trait patterns in different layers (0–2, 5–35, 0–35 m) for a 5-year dataset of Lake Tovel, Italy. Trait patterns were determined by comparing Qobserved to Q from random communities. While trait patterns can be determined by species traits, richness, and abundance, in most samples, irrespective of layer, trait patterns could be solely attributed to traits indicating their importance for community assembly. Trait convergence dominated in the upper layer, while trait divergence dominated in the lower layer. Using logistic regression, we related trait patterns to environmental parameters. In the lower layer, trait divergence was linked to competition for food while trait convergence was linked to copepod predation. However, in the upper layer neither competitors nor predators influenced trait patterns, and we suggest that ultraviolet radiation and temperature were the main drivers of trait convergence. Our study indicated that environmental filtering drove rotifer trait patterns in the upper layer, whereas species interactions drove trait patterns in the lower layer.

Keywords

Lake Zooplankton Rao’s quadratic entropy Trait divergence Trait convergence Null model 

Supplementary material

10750_2015_2191_MOESM1_ESM.doc (137 kb)
Supplementary material 1 (DOC 137 kb)

References

  1. Barnett, A. & B. E. Beisner, 2007. Zooplankton biodiversity and lake trophic state: explanations invoking resource abundance and distribution. Ecology 88: 1675–1686.CrossRefPubMedGoogle Scholar
  2. Barnett, A., K. Finlay & B. E. Beisner, 2007. Functional diversity of crustacean zooplankton communities: towards a trait-based classification. Freshwater Biology 52: 796–813.CrossRefGoogle Scholar
  3. Bernard-Verdier, M., M. L. Navas, M. Vellend, C. Violle, A. Fayolle & E. Garnier, 2012. Community assembly along a soil depth gradient: contrasting patterns of plant trait convergence and divergence in a Mediterranean rangeland. Journal of Ecology 100: 1422–1433.CrossRefGoogle Scholar
  4. Bērzinš, B. & B. Pejler, 1989. Rotifer occurrence in relation to temperature. Hydrobiologia 175: 223–231.CrossRefGoogle Scholar
  5. Braioni, M. G. & D. Gelmini, 1983. Guide per il riconoscimento delle specie Animali delle acque interne Italiane. 23. Rotiferi Monogononti. Consiglio Nazionale delle Ricerche, Roma.Google Scholar
  6. Bogdan, K. G. & J. J. Gilbert, 1984. Body size and food size in freshwater zooplankton. Proceedings of the National Academy of Science 81: 6427–6431.CrossRefGoogle Scholar
  7. Borsato, A. & P. Ferretti, 2006. Hydrological monitoring of Lake Tovel and its catchment [in Italian]. Studi Trentini di Scienze Naturali, Acta Biologica 81: 205–223.Google Scholar
  8. Botta-Dukát, Z., 2005. Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. Journal of Vegetation Science 16: 533–540.CrossRefGoogle Scholar
  9. Bottrell, H. H., A. Duncan, Z. M. Gliwicz, E. Grygierek, A. Herzig, A. Hillbricht-Ilkowska, H. Kurosawa, P. Larsson & T. Weglenska, 1976. A review of some problems in zooplankton production studies. Norwegian Journal of Zoology 24: 419–456.Google Scholar
  10. Boukal, D. S., 2014. Trait- and size-based descriptions of trophic links in freshwater food webs: current status and perspectives. Journal of Limnology 73: 171–185.CrossRefGoogle Scholar
  11. Brown, J. H., A. P. Allen & J. F. Gillooly, 2007. The metabolic theory of ecology and the role of body size in marine and freshwater ecosystems. In Hildrew, A. G., D. G. Raffaelli & R. E. Brown (eds), Body Size: The Structure and Function of Aquatic Ecosystems. Cambridge University Press, Cambridge: 1–15.CrossRefGoogle Scholar
  12. Cadotte, M. W., K. Carscadden & N. Mirotchnick, 2011. Beyond species: functional diversity and the maintenance of ecological processes and services. Journal of Applied Ecology 48: 1079–1087.CrossRefGoogle Scholar
  13. Cornwell, W. K., D. W. Schwilk & D. D. Ackerly, 2006. A trait-based test for the habitat filtering: convex hull volume. Ecology 87: 1465–1471.CrossRefPubMedGoogle Scholar
  14. De Bello, F., 2012. The quest for trait convergence and divergence in community assembly: are null-models the magic wand? Global Ecology and Biogeography 21: 312–317.CrossRefGoogle Scholar
  15. De Bello, F., S. Lavorel, S. Lavergne, C. H. Albert, I. Boulangeat, F. Mazel & W. Thuiller, 2012. Hierarchical effects of environmental filters on the functional structure of plant communities: a case study in the French Alps. Ecography 36: 393–402.CrossRefGoogle Scholar
  16. Diéguez, M. C. & J. J. Gilbert, 2002. Suppression of the rotifer Polyarthra remata by the omnivorous copepod Tropocyclops extensus: predation or competition. Journal of Plankton Research 24: 359–369.CrossRefGoogle Scholar
  17. Feld, C. K., F. de Bello & S. Dolédec, 2014. Biodiversity of traits and species both show weak responses to hydromorphological alteration in lowland river macroinvertebrates. Freshwater Biology 59: 233–248.CrossRefGoogle Scholar
  18. Fišer, C., A. Blejec & P. Trontelj, 2012. Niche-based mechanisms operating within extreme habitats: a case study of subterranean amphipod communities. Biology Letters 8: 578–581.CrossRefPubMedCentralPubMedGoogle Scholar
  19. Fussmann, G., 1996. The importance of crustacean zooplankton in structuring rotifer and phytoplankton communities: an enclosure study. Journal of Plankton Research 18: 1897–1915.CrossRefGoogle Scholar
  20. Geber, M. A. & L. R. Griffin, 2003. Inheritance and natural selection on functional traits. International Journal of Plant Sciences 164: 21–42.CrossRefGoogle Scholar
  21. Gilbert, J. J. & R. S. Stemberger, 1985. Control of Keratella populations by interference competition from Daphnia. Limnology and Oceanography 30: 180–188.CrossRefGoogle Scholar
  22. Gilbert, J. J. & H. J. McIsaac, 1989. The susceptibility of Keratella cochlearis to interference from small cladocerans. Freshwater Biology 22: 333–339.CrossRefGoogle Scholar
  23. Gilbert, J. J. & M. A. McPeek, 2013. Maternal age and spine development in a rotifer: ecological implications and evolution. Ecology 94: 2166–2172.CrossRefPubMedGoogle Scholar
  24. Gillooly, J. F., J. H. Brown, G. B. West, V. M. Savage & E. L. Charnov, 2001. Effects of size and temperature on metabolic rate. Science 293: 2248–2251.CrossRefPubMedGoogle Scholar
  25. Gotelli, N. J. & D. McCabe, 2002. Species co-occurrence: a meta-analysis of J.M. Diamond’s assembly rules model. Ecology 83: 2091–2096.Google Scholar
  26. Gower, J. C., 1971. A general coefficient of similarity and some of its properties. Biometrics 27: 623–637.CrossRefGoogle Scholar
  27. Gotelli, N. J., 2000. Null model analysis of species co-occurrence patterns. Ecology 81: 2606–2621.CrossRefGoogle Scholar
  28. Götzenberger, L., F. de Bello, K. A. Bråthen, J. Davison, A. Dubuis, A. Guisan, J. Leps, R. Lindborg, M. Moora, M. Pärtel, L. Pellissier, J. Pottier, P. Vittoz, K. Zobel & M. Zobel, 2012. Ecological assembly rules in plant communities-approaches, patterns and prospects. Biological Reviews 87: 111–127.CrossRefPubMedGoogle Scholar
  29. Green, J. D. & R. J. Shiel, 1999. Mouthpart morphology of three calanoid copepods from Australian temporary pools: evidence for carnivory. New Zealand Journal of Marine and Freshwater Research 33: 385–398.CrossRefGoogle Scholar
  30. Hubbell, S. P., 2001. The Unified Neutral Theory of Biodiversity and Biogeography, Monographs in Population Biology. Princeton University Press, Princeton.Google Scholar
  31. Humphries, S., 2007. Body size and suspension feeding. In Hildrew, A. G., D. G. Raffaelli & R. E. Brown (eds), The Structure and Function of Aquatic Ecosystems. Cambridge University Press, Cambridge: 16–32.CrossRefGoogle Scholar
  32. Karabin, A., 1985. Pelagic zooplankton (Rotatoria + Crustacea) variation in the process of lake eutrophication. II. Modifying effect of biotic agents. Ekologia Polska 33: 617–644.Google Scholar
  33. Keddy, P. A., 1992. Assembly and response rules – 2 goals for predictive community ecology. Journal of Vegetation Science 3: 157–164.CrossRefGoogle Scholar
  34. Kneitel, J. M. & J. M. Chase, 2004. Trade-offs in community ecology: linking spatial scales and species coexistence. Ecology Letters 7: 69–80.CrossRefGoogle Scholar
  35. Koste, W., 1978. Rotatoria. Die Rädertiere Mitteleuropas, Vol. 2. Gebrüder Borntraeger, Berlin.Google Scholar
  36. Kuefler, D., T. Avgar & J. M. Fryxell, 2013. Density- and resource-dependent movement characteristics in a rotifer. Functional Ecology 27: 323–328.CrossRefGoogle Scholar
  37. Kutikova, L. A., 1983. Parallelism in the evolution of rotifers. Hydrobiologia 104: 3–7.CrossRefGoogle Scholar
  38. Laliberté, E. & P. Legendre, 2010. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91: 299–305.CrossRefPubMedGoogle Scholar
  39. Lapesa, S., T. W. Snell, D. M. Fields & M. Serra, 2002. Predatory interactions between a cyclopoid copepod and three sibling rotifer species. Freshwater Biology 47: 1685–1695.CrossRefGoogle Scholar
  40. Lepš, J., F. de Bello, S. Lavorel & S. Berman, 2006. Quantifying and interpreting functional diversity of natural communities: practical considerations matter. Preslia 78: 481–501.Google Scholar
  41. Longhi, M. L. & B. E. Beisner, 2010. Patterns in taxonomic and functional diversity of lake phytoplankton. Freshwater Biology 55: 1349–1366.CrossRefGoogle Scholar
  42. MacArthur, R. H. & R. Levins, 1967. Limiting similarity convergence and divergence of coexisting species. American Naturalist 101: 377–385.Google Scholar
  43. Mayfield, M. M. & J. M. Levine, 2010. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters 13: 1085–1093.CrossRefPubMedGoogle Scholar
  44. McGill, B. J., B. J. Enquist, E. Weiher & M. Westoby, 2006. Rebuilding community ecology from functional traits. Trends in Ecology and Evolution 21: 178–185.CrossRefPubMedGoogle Scholar
  45. Montero-Pau, J., E. Ramos-Rodríguez, M. Serra & A. Gómez, 2011. Long-term coexistence of rotifer cryptic species. PLoS One 6: e21530.CrossRefPubMedCentralPubMedGoogle Scholar
  46. Mouchet, M. A., S. Villéger, N. M. H. Mason & D. Mouillot, 2010. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology 24: 867–876.CrossRefGoogle Scholar
  47. Naeem, S. & J. P. Wright, 2003. Disentangling biodiversity effects on ecosystem functioning: deriving solutions to a seemingly insurmountable problem. Ecology Letters 6: 567–579.CrossRefGoogle Scholar
  48. Naselli-Flores, L. & R. Barone, 1997. Importance of water-level fluctuations on population dynamics of cladocerans in a hypertrophic reservoir (Lake Arancio, south-west Sicily, Italy). Hydrobiologia 360: 223–232.CrossRefGoogle Scholar
  49. Obertegger, U., M. G. Braioni & G. Flaim, 2006. The zooplankton of Lake Tovel. Studi Trentini di Scienze Naturali, Acta Biologica 81: 369–378.Google Scholar
  50. Obertegger, U., G. Flaim & R. Sommaruga, 2008. Multifactorial nature of rotifer water level preferences in an oligotrophic lake. Journal of Plankton Research 30: 633–643.CrossRefGoogle Scholar
  51. Obertegger, U., A. Borsato & G. Flaim, 2010. Rotifer–crustacean interactions in a pseudokarstic lake: influence of hydrology. Aquatic Ecology 44: 121–130.CrossRefGoogle Scholar
  52. Obertegger, U. & M. Manca, 2011. Response of rotifer functional groups to changing trophic state and crustacean community. Journal of Limnology 70: 231–238.CrossRefGoogle Scholar
  53. Obertegger, U., H. A. Smith, G. Flaim & R. L. Wallace, 2011. Using the guild ratio to characterize pelagic rotifer communities. Hydrobiologia 662: 157–162.CrossRefGoogle Scholar
  54. Obertegger, U., D. Fontaneto & G. Flaim, 2012. Using DNA taxonomy to investigate the ecological determinants of plankton diversity: explaining the occurrence of Synchaeta spp. (Rotifera, Monogononta) in mountain lakes. Freshwater Biology 56: 1–9.Google Scholar
  55. Obertegger, U., G. Flaim & D. Fontaneto, 2014. Cryptic diversity within the rotifer Polyarthra dolichoptera along an altitudinal gradient. Freshwater Biology 59: 2413–2427.CrossRefGoogle Scholar
  56. Pärtel, M., 2014. Community ecology of absent species: hidden and dark diversity. Journal of Vegetation Science 25: 1154–1159.Google Scholar
  57. Pavoine, S. & S. Dolédec, 2005. The apportionment of quadratic entropy: a useful alternative for partitioning diversity in ecological data. Environmental and Ecological Statistics 12: 125–138.CrossRefGoogle Scholar
  58. Petchey, O. L. & K. J. Gaston, 2002. Extinction and the loss of functional diversity. Proceedings of the Royal Society B 269: 1721–1727.CrossRefPubMedCentralPubMedGoogle Scholar
  59. Petchey, O. L. & K. J. Gaston, 2006. Functional diversity: back to basics and looking forward. Ecology Letters 9: 741–758.CrossRefPubMedGoogle Scholar
  60. Petchey, O. L., K. L. Evans, I. S. Fishburn & K. J. Gaston, 2007. Low functional diversity and no redundancy in British avian assemblages. Journal of Animal Ecology 76: 977–985.CrossRefPubMedGoogle Scholar
  61. Poos, M. S., S. C. Walker & D. A. Jackson, 2009. Functional-diversity indices can be driven by methodological choices and species richness. Ecology 90: 341–347.CrossRefPubMedGoogle Scholar
  62. Pyron, M., L. Williams, J. Beugly & S. J. Acquemin, 2011. The role of trait-based approaches in understanding stream fish assemblages. Freshwater Biology 56: 1579–1592.CrossRefGoogle Scholar
  63. Quinn, G. & M. Keough, 2002. Experimental Design and Data Analysis for Biologists. Cambridge University Press, New York.CrossRefGoogle Scholar
  64. R Development Core Team, 2013. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0 [available on internet at http://www.R-project.org/].
  65. Ricotta, C. & M. Moretti, 2011. CWM and Rao’s quadratic diversity: a unified framework for functional ecology. Oecologia 167: 181–188.CrossRefPubMedGoogle Scholar
  66. Roche, K. E., 1987. Post-encounter vulnerability of some rotifer prey types to predation by the copepod Acanthocyclops robustus. Hydrobiologia 147: 229–233.CrossRefGoogle Scholar
  67. Robin, X., T. Natacha, A. Hainard, N. Tiberti, F. Lisacek, J. C. Sanchez & M. Müller, 2011. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 12: 77 [available on internet at http://www.biomedcentral.com/1471-2105/12/77/].
  68. Rothhaupt, K. O., 1990. Differences in particle size-dependent feeding efficiencies of closely related rotifer species. Limnology and Oceanography 35: 16–23.CrossRefGoogle Scholar
  69. Ruttner-Kolisko, A., 1974. Plankton rotifers, biology and taxonomy. Die Binnengewässer XXVI: 1–146.Google Scholar
  70. Salt, G. W., 1987. The components of feeding behavior in rotifers. Hydrobiologia 147: 271–281.CrossRefGoogle Scholar
  71. Salt, G. W., G. F. Sabbadini & M. L. Commins, 1978. Trophi morphology relative to food habits in six species of rotifer (Asplanchnidae). Transactions of the American Microscopical Society 97: 469–485.CrossRefGoogle Scholar
  72. Segers, H. & W. H. De Smet, 2008. Diversity and endemism in Rotifera: a review, and Keratella Bory de St Vincent. Biodiversity and Conservation 17: 303–316.CrossRefGoogle Scholar
  73. Stemberger, R. S. & J. J. Gilbert, 1987. Body size, food concentartion, and population growth in planktonic rotifers. Ecology 66: 1151–1159.CrossRefGoogle Scholar
  74. Swenson, N. G., 2014. Functional and Phylogenetic Ecology in R. Springer, New York.CrossRefGoogle Scholar
  75. Ulrich, W. & N. J. Gotelli, 2010. Null model analysis of species associations using abundance data. Ecology 91: 3384–3397.CrossRefPubMedGoogle Scholar
  76. Ulrich, W., M. Ollik & K. I. Ugland, 2010. A meta-analysis of species–abundance distributions. Oikos 119: 1149–1155.CrossRefGoogle Scholar
  77. Utermöhl, H., 1958. Zur Vervollkommung der quantitativen Phytoplankton-Methodik. Mitteilungen der Internationalen Vereinigung der Limnologie 9: 1–38.Google Scholar
  78. Verberk, W., 2012. Explaining general patterns in species abundance and distributions. Nature Education Knowledge 3: 38.Google Scholar
  79. Virro, T., M. Haberman, M. Haldna & K. Blank, 2009. Diversity and structure of the winter rotifer assemblage in a shallow eutrophic northern temperate Lake Võrtsjärv. Aquatic Ecology 43: 755–764.CrossRefGoogle Scholar
  80. Violle, C., M. L. Navas, D. Vile, E. Kazakou, C. Fortunel, I. Hummel & E. Garnier, 2007. Let the concept of trait be functional! Oikos 116: 882–892.CrossRefGoogle Scholar
  81. Vogt, R. J., B. E. Beisner & Y. T. Prairie, 2010. Functional diversity is positively associated with biomass for lake diatoms. Freshwater Biology 55: 1636–1646.Google Scholar
  82. Vogt, R. J., P. R. Peres-Neto & B. E. Beisner, 2013. Using functional traits to investigate the determinants of crustacean zooplankton community structure. Oikos 122: 1700–1709.CrossRefGoogle Scholar
  83. Wallace, R. L., T. W. Snell, C. Ricci & N. Nogrady, 2006. Rotifera biology, ecology and systematics. In Wallace, R. L., T. W. Snell, C. Ricci & N. Nogrady (eds), Guides to the Identification of the Microinvertebrates of the Continental Waters of the World. SPB Academic Publishing, Amsterdam.Google Scholar
  84. Weiher, E., D. Freund, T. Bunton, A. Stefanski, T. Lee & S. Bentivenga, 2011. Advances, challenges and a developing synthesis of ecological community assembly theory. Proceedings of the Royal Society B 366: 2403–2413.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Sustainable Agro-ecosystems and Bioresources, Research and Innovation CentreFondazione Edmund Mach (FEM)San Michele all’AdigeItaly

Personalised recommendations