Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Community assembly of rotifers based on morphological traits

Abstract

Trait patterns can give insights into how communities assemble under a functional perspective. We constructed a rotifer trait matrix related to food acquisition and predator defence and calculated Rao’s quadratic entropy (Q) as an index of functional diversity to investigate trait patterns in different layers (0–2, 5–35, 0–35 m) for a 5-year dataset of Lake Tovel, Italy. Trait patterns were determined by comparing Q observed to Q from random communities. While trait patterns can be determined by species traits, richness, and abundance, in most samples, irrespective of layer, trait patterns could be solely attributed to traits indicating their importance for community assembly. Trait convergence dominated in the upper layer, while trait divergence dominated in the lower layer. Using logistic regression, we related trait patterns to environmental parameters. In the lower layer, trait divergence was linked to competition for food while trait convergence was linked to copepod predation. However, in the upper layer neither competitors nor predators influenced trait patterns, and we suggest that ultraviolet radiation and temperature were the main drivers of trait convergence. Our study indicated that environmental filtering drove rotifer trait patterns in the upper layer, whereas species interactions drove trait patterns in the lower layer.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Barnett, A. & B. E. Beisner, 2007. Zooplankton biodiversity and lake trophic state: explanations invoking resource abundance and distribution. Ecology 88: 1675–1686.

  2. Barnett, A., K. Finlay & B. E. Beisner, 2007. Functional diversity of crustacean zooplankton communities: towards a trait-based classification. Freshwater Biology 52: 796–813.

  3. Bernard-Verdier, M., M. L. Navas, M. Vellend, C. Violle, A. Fayolle & E. Garnier, 2012. Community assembly along a soil depth gradient: contrasting patterns of plant trait convergence and divergence in a Mediterranean rangeland. Journal of Ecology 100: 1422–1433.

  4. Bērzinš, B. & B. Pejler, 1989. Rotifer occurrence in relation to temperature. Hydrobiologia 175: 223–231.

  5. Braioni, M. G. & D. Gelmini, 1983. Guide per il riconoscimento delle specie Animali delle acque interne Italiane. 23. Rotiferi Monogononti. Consiglio Nazionale delle Ricerche, Roma.

  6. Bogdan, K. G. & J. J. Gilbert, 1984. Body size and food size in freshwater zooplankton. Proceedings of the National Academy of Science 81: 6427–6431.

  7. Borsato, A. & P. Ferretti, 2006. Hydrological monitoring of Lake Tovel and its catchment [in Italian]. Studi Trentini di Scienze Naturali, Acta Biologica 81: 205–223.

  8. Botta-Dukát, Z., 2005. Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. Journal of Vegetation Science 16: 533–540.

  9. Bottrell, H. H., A. Duncan, Z. M. Gliwicz, E. Grygierek, A. Herzig, A. Hillbricht-Ilkowska, H. Kurosawa, P. Larsson & T. Weglenska, 1976. A review of some problems in zooplankton production studies. Norwegian Journal of Zoology 24: 419–456.

  10. Boukal, D. S., 2014. Trait- and size-based descriptions of trophic links in freshwater food webs: current status and perspectives. Journal of Limnology 73: 171–185.

  11. Brown, J. H., A. P. Allen & J. F. Gillooly, 2007. The metabolic theory of ecology and the role of body size in marine and freshwater ecosystems. In Hildrew, A. G., D. G. Raffaelli & R. E. Brown (eds), Body Size: The Structure and Function of Aquatic Ecosystems. Cambridge University Press, Cambridge: 1–15.

  12. Cadotte, M. W., K. Carscadden & N. Mirotchnick, 2011. Beyond species: functional diversity and the maintenance of ecological processes and services. Journal of Applied Ecology 48: 1079–1087.

  13. Cornwell, W. K., D. W. Schwilk & D. D. Ackerly, 2006. A trait-based test for the habitat filtering: convex hull volume. Ecology 87: 1465–1471.

  14. De Bello, F., 2012. The quest for trait convergence and divergence in community assembly: are null-models the magic wand? Global Ecology and Biogeography 21: 312–317.

  15. De Bello, F., S. Lavorel, S. Lavergne, C. H. Albert, I. Boulangeat, F. Mazel & W. Thuiller, 2012. Hierarchical effects of environmental filters on the functional structure of plant communities: a case study in the French Alps. Ecography 36: 393–402.

  16. Diéguez, M. C. & J. J. Gilbert, 2002. Suppression of the rotifer Polyarthra remata by the omnivorous copepod Tropocyclops extensus: predation or competition. Journal of Plankton Research 24: 359–369.

  17. Feld, C. K., F. de Bello & S. Dolédec, 2014. Biodiversity of traits and species both show weak responses to hydromorphological alteration in lowland river macroinvertebrates. Freshwater Biology 59: 233–248.

  18. Fišer, C., A. Blejec & P. Trontelj, 2012. Niche-based mechanisms operating within extreme habitats: a case study of subterranean amphipod communities. Biology Letters 8: 578–581.

  19. Fussmann, G., 1996. The importance of crustacean zooplankton in structuring rotifer and phytoplankton communities: an enclosure study. Journal of Plankton Research 18: 1897–1915.

  20. Geber, M. A. & L. R. Griffin, 2003. Inheritance and natural selection on functional traits. International Journal of Plant Sciences 164: 21–42.

  21. Gilbert, J. J. & R. S. Stemberger, 1985. Control of Keratella populations by interference competition from Daphnia. Limnology and Oceanography 30: 180–188.

  22. Gilbert, J. J. & H. J. McIsaac, 1989. The susceptibility of Keratella cochlearis to interference from small cladocerans. Freshwater Biology 22: 333–339.

  23. Gilbert, J. J. & M. A. McPeek, 2013. Maternal age and spine development in a rotifer: ecological implications and evolution. Ecology 94: 2166–2172.

  24. Gillooly, J. F., J. H. Brown, G. B. West, V. M. Savage & E. L. Charnov, 2001. Effects of size and temperature on metabolic rate. Science 293: 2248–2251.

  25. Gotelli, N. J. & D. McCabe, 2002. Species co-occurrence: a meta-analysis of J.M. Diamond’s assembly rules model. Ecology 83: 2091–2096.

  26. Gower, J. C., 1971. A general coefficient of similarity and some of its properties. Biometrics 27: 623–637.

  27. Gotelli, N. J., 2000. Null model analysis of species co-occurrence patterns. Ecology 81: 2606–2621.

  28. Götzenberger, L., F. de Bello, K. A. Bråthen, J. Davison, A. Dubuis, A. Guisan, J. Leps, R. Lindborg, M. Moora, M. Pärtel, L. Pellissier, J. Pottier, P. Vittoz, K. Zobel & M. Zobel, 2012. Ecological assembly rules in plant communities-approaches, patterns and prospects. Biological Reviews 87: 111–127.

  29. Green, J. D. & R. J. Shiel, 1999. Mouthpart morphology of three calanoid copepods from Australian temporary pools: evidence for carnivory. New Zealand Journal of Marine and Freshwater Research 33: 385–398.

  30. Hubbell, S. P., 2001. The Unified Neutral Theory of Biodiversity and Biogeography, Monographs in Population Biology. Princeton University Press, Princeton.

  31. Humphries, S., 2007. Body size and suspension feeding. In Hildrew, A. G., D. G. Raffaelli & R. E. Brown (eds), The Structure and Function of Aquatic Ecosystems. Cambridge University Press, Cambridge: 16–32.

  32. Karabin, A., 1985. Pelagic zooplankton (Rotatoria + Crustacea) variation in the process of lake eutrophication. II. Modifying effect of biotic agents. Ekologia Polska 33: 617–644.

  33. Keddy, P. A., 1992. Assembly and response rules – 2 goals for predictive community ecology. Journal of Vegetation Science 3: 157–164.

  34. Kneitel, J. M. & J. M. Chase, 2004. Trade-offs in community ecology: linking spatial scales and species coexistence. Ecology Letters 7: 69–80.

  35. Koste, W., 1978. Rotatoria. Die Rädertiere Mitteleuropas, Vol. 2. Gebrüder Borntraeger, Berlin.

  36. Kuefler, D., T. Avgar & J. M. Fryxell, 2013. Density- and resource-dependent movement characteristics in a rotifer. Functional Ecology 27: 323–328.

  37. Kutikova, L. A., 1983. Parallelism in the evolution of rotifers. Hydrobiologia 104: 3–7.

  38. Laliberté, E. & P. Legendre, 2010. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91: 299–305.

  39. Lapesa, S., T. W. Snell, D. M. Fields & M. Serra, 2002. Predatory interactions between a cyclopoid copepod and three sibling rotifer species. Freshwater Biology 47: 1685–1695.

  40. Lepš, J., F. de Bello, S. Lavorel & S. Berman, 2006. Quantifying and interpreting functional diversity of natural communities: practical considerations matter. Preslia 78: 481–501.

  41. Longhi, M. L. & B. E. Beisner, 2010. Patterns in taxonomic and functional diversity of lake phytoplankton. Freshwater Biology 55: 1349–1366.

  42. MacArthur, R. H. & R. Levins, 1967. Limiting similarity convergence and divergence of coexisting species. American Naturalist 101: 377–385.

  43. Mayfield, M. M. & J. M. Levine, 2010. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters 13: 1085–1093.

  44. McGill, B. J., B. J. Enquist, E. Weiher & M. Westoby, 2006. Rebuilding community ecology from functional traits. Trends in Ecology and Evolution 21: 178–185.

  45. Montero-Pau, J., E. Ramos-Rodríguez, M. Serra & A. Gómez, 2011. Long-term coexistence of rotifer cryptic species. PLoS One 6: e21530.

  46. Mouchet, M. A., S. Villéger, N. M. H. Mason & D. Mouillot, 2010. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology 24: 867–876.

  47. Naeem, S. & J. P. Wright, 2003. Disentangling biodiversity effects on ecosystem functioning: deriving solutions to a seemingly insurmountable problem. Ecology Letters 6: 567–579.

  48. Naselli-Flores, L. & R. Barone, 1997. Importance of water-level fluctuations on population dynamics of cladocerans in a hypertrophic reservoir (Lake Arancio, south-west Sicily, Italy). Hydrobiologia 360: 223–232.

  49. Obertegger, U., M. G. Braioni & G. Flaim, 2006. The zooplankton of Lake Tovel. Studi Trentini di Scienze Naturali, Acta Biologica 81: 369–378.

  50. Obertegger, U., G. Flaim & R. Sommaruga, 2008. Multifactorial nature of rotifer water level preferences in an oligotrophic lake. Journal of Plankton Research 30: 633–643.

  51. Obertegger, U., A. Borsato & G. Flaim, 2010. Rotifer–crustacean interactions in a pseudokarstic lake: influence of hydrology. Aquatic Ecology 44: 121–130.

  52. Obertegger, U. & M. Manca, 2011. Response of rotifer functional groups to changing trophic state and crustacean community. Journal of Limnology 70: 231–238.

  53. Obertegger, U., H. A. Smith, G. Flaim & R. L. Wallace, 2011. Using the guild ratio to characterize pelagic rotifer communities. Hydrobiologia 662: 157–162.

  54. Obertegger, U., D. Fontaneto & G. Flaim, 2012. Using DNA taxonomy to investigate the ecological determinants of plankton diversity: explaining the occurrence of Synchaeta spp. (Rotifera, Monogononta) in mountain lakes. Freshwater Biology 56: 1–9.

  55. Obertegger, U., G. Flaim & D. Fontaneto, 2014. Cryptic diversity within the rotifer Polyarthra dolichoptera along an altitudinal gradient. Freshwater Biology 59: 2413–2427.

  56. Pärtel, M., 2014. Community ecology of absent species: hidden and dark diversity. Journal of Vegetation Science 25: 1154–1159.

  57. Pavoine, S. & S. Dolédec, 2005. The apportionment of quadratic entropy: a useful alternative for partitioning diversity in ecological data. Environmental and Ecological Statistics 12: 125–138.

  58. Petchey, O. L. & K. J. Gaston, 2002. Extinction and the loss of functional diversity. Proceedings of the Royal Society B 269: 1721–1727.

  59. Petchey, O. L. & K. J. Gaston, 2006. Functional diversity: back to basics and looking forward. Ecology Letters 9: 741–758.

  60. Petchey, O. L., K. L. Evans, I. S. Fishburn & K. J. Gaston, 2007. Low functional diversity and no redundancy in British avian assemblages. Journal of Animal Ecology 76: 977–985.

  61. Poos, M. S., S. C. Walker & D. A. Jackson, 2009. Functional-diversity indices can be driven by methodological choices and species richness. Ecology 90: 341–347.

  62. Pyron, M., L. Williams, J. Beugly & S. J. Acquemin, 2011. The role of trait-based approaches in understanding stream fish assemblages. Freshwater Biology 56: 1579–1592.

  63. Quinn, G. & M. Keough, 2002. Experimental Design and Data Analysis for Biologists. Cambridge University Press, New York.

  64. R Development Core Team, 2013. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0 [available on internet at http://www.R-project.org/].

  65. Ricotta, C. & M. Moretti, 2011. CWM and Rao’s quadratic diversity: a unified framework for functional ecology. Oecologia 167: 181–188.

  66. Roche, K. E., 1987. Post-encounter vulnerability of some rotifer prey types to predation by the copepod Acanthocyclops robustus. Hydrobiologia 147: 229–233.

  67. Robin, X., T. Natacha, A. Hainard, N. Tiberti, F. Lisacek, J. C. Sanchez & M. Müller, 2011. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 12: 77 [available on internet at http://www.biomedcentral.com/1471-2105/12/77/].

  68. Rothhaupt, K. O., 1990. Differences in particle size-dependent feeding efficiencies of closely related rotifer species. Limnology and Oceanography 35: 16–23.

  69. Ruttner-Kolisko, A., 1974. Plankton rotifers, biology and taxonomy. Die Binnengewässer XXVI: 1–146.

  70. Salt, G. W., 1987. The components of feeding behavior in rotifers. Hydrobiologia 147: 271–281.

  71. Salt, G. W., G. F. Sabbadini & M. L. Commins, 1978. Trophi morphology relative to food habits in six species of rotifer (Asplanchnidae). Transactions of the American Microscopical Society 97: 469–485.

  72. Segers, H. & W. H. De Smet, 2008. Diversity and endemism in Rotifera: a review, and Keratella Bory de St Vincent. Biodiversity and Conservation 17: 303–316.

  73. Stemberger, R. S. & J. J. Gilbert, 1987. Body size, food concentartion, and population growth in planktonic rotifers. Ecology 66: 1151–1159.

  74. Swenson, N. G., 2014. Functional and Phylogenetic Ecology in R. Springer, New York.

  75. Ulrich, W. & N. J. Gotelli, 2010. Null model analysis of species associations using abundance data. Ecology 91: 3384–3397.

  76. Ulrich, W., M. Ollik & K. I. Ugland, 2010. A meta-analysis of species–abundance distributions. Oikos 119: 1149–1155.

  77. Utermöhl, H., 1958. Zur Vervollkommung der quantitativen Phytoplankton-Methodik. Mitteilungen der Internationalen Vereinigung der Limnologie 9: 1–38.

  78. Verberk, W., 2012. Explaining general patterns in species abundance and distributions. Nature Education Knowledge 3: 38.

  79. Virro, T., M. Haberman, M. Haldna & K. Blank, 2009. Diversity and structure of the winter rotifer assemblage in a shallow eutrophic northern temperate Lake Võrtsjärv. Aquatic Ecology 43: 755–764.

  80. Violle, C., M. L. Navas, D. Vile, E. Kazakou, C. Fortunel, I. Hummel & E. Garnier, 2007. Let the concept of trait be functional! Oikos 116: 882–892.

  81. Vogt, R. J., B. E. Beisner & Y. T. Prairie, 2010. Functional diversity is positively associated with biomass for lake diatoms. Freshwater Biology 55: 1636–1646.

  82. Vogt, R. J., P. R. Peres-Neto & B. E. Beisner, 2013. Using functional traits to investigate the determinants of crustacean zooplankton community structure. Oikos 122: 1700–1709.

  83. Wallace, R. L., T. W. Snell, C. Ricci & N. Nogrady, 2006. Rotifera biology, ecology and systematics. In Wallace, R. L., T. W. Snell, C. Ricci & N. Nogrady (eds), Guides to the Identification of the Microinvertebrates of the Continental Waters of the World. SPB Academic Publishing, Amsterdam.

  84. Weiher, E., D. Freund, T. Bunton, A. Stefanski, T. Lee & S. Bentivenga, 2011. Advances, challenges and a developing synthesis of ecological community assembly theory. Proceedings of the Royal Society B 366: 2403–2413.

Download references

Acknowledgements

This study was partially supported by ECOPLAN and CERCA research Grants (Province of Trento, Italy) and the Fondazione E. Mach. We thank two anonymous reviewers and Heidi Hauffe for helpful suggestions.

Author information

Correspondence to Ulrike Obertegger.

Additional information

Handling editor: Diego Fontaneto

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 137 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Obertegger, U., Flaim, G. Community assembly of rotifers based on morphological traits. Hydrobiologia 753, 31–45 (2015). https://doi.org/10.1007/s10750-015-2191-7

Download citation

Keywords

  • Lake
  • Zooplankton
  • Rao’s quadratic entropy
  • Trait divergence
  • Trait convergence
  • Null model