Hydrobiologia

, Volume 750, Issue 1, pp 125–146 | Cite as

Age and origin of Australian Bennelongia (Crustacea, Ostracoda)

  • Isa Schön
  • Rylan Shearn
  • Koen Martens
  • Annette Koenders
  • Stuart Halse
TRENDS IN AQUATIC ECOLOGY

Abstract

South-western Australia holds an exceptional number of endemic taxa and has been recognized as a biodiversity hotspot at a global scale. We report a much higher diversity in the genus Bennelongia (Ostracoda) in Western than in eastern Australia. Using mitochondrial COI sequence data for phylogenies, relative age estimates, lineage-through-time plots, and reconstructions of ancestral distributions, we test four hypotheses that might explain the higher diversity and endemicity in Western Australia. (1) We find no evidence for ancient relictualism as most Bennelongia species are probably of Miocene age. (2) There are also no apparent links to vicariant events: speciation has mostly taken place in Western Australia and has been ongoing through the evolutionary history of Bennelongia. (3) Dispersal has apparently not negatively affected Western Australian Bennelongia endemicity although these ostracods produce drought-resistant eggs. We report one case of recent long distance dispersal in B. dedeckkeri with genetically identical populations occurring more than 2,000 km apart. (4) Since speciation has been ongoing, there is no evidence of recent explosive speciation through genetic isolation. The underlying mechanisms of Bennelongia speciation thus remain elusive, although speciation has mostly occurred during a period of increasing aridification of Australia.

Keywords

Biodiversity Divergence time Australia Phylogeny Phylogeography Drought resistance Dispersal Ostracod 

Supplementary material

10750_2014_2159_MOESM1_ESM.docx (34 kb)
Supplementary material 1 (DOCX 33 kb)

References

  1. Ali, S. S., Y. Yu, M. Pfosser & W. Wetschnig, 2012. Inferences of biogeographical histories within subfamily Hyacinthoideae using S-DIVA and Bayesian binary MCMC analysis implemented in RASP (Reconstruct Ancestral State in Phylogenies). Annals of Botany 109: 95–107.PubMedCentralPubMedGoogle Scholar
  2. Archer, M. & G. Clayton, 1984. Vertebrate Zoogeography and Evolution in Australasia (Animals in Space and Time). Hesperian Press, Marrickville, NSW.Google Scholar
  3. Barendse, W., 1984. Speciation in the genus Crinia (Anura: Myobatrachidae) in southern Australia: a phylogenetic analysis of allozyme data supporting endemic speciation in southwestern Australia. Evolution 38: 1238–1250.Google Scholar
  4. Bode, S. N. S., D. K. Lamatsch, M. J. F. Martins, O. Schmit, J. Vandekerkhove, F. Mezquita, T. Namiotko, G. Rossetti, I. Schön, R. K. Butlin & K. Martens, 2010. Exceptional cryptic diversity and multiple origins of parthenogenesis in a freshwater ostracod. Molecular Phylogenetics and Evolution 54: 542–552.PubMedGoogle Scholar
  5. Bowler, J. M., 1976. Aridity in Australia: age, origins and expression in aeolian land forms and sediments. Earth Science Reviews 12: 279–310.Google Scholar
  6. Boxshall, G. & D. Defaye, 2008. Global diversity of copepods (Crustacea: Copepoda) in freshwater. Hydrobiologia 595: 195–207.Google Scholar
  7. Brochet, A., M. Gauthier-Clerc, M. Guillemain, H. Fritz, A. Waterkeyn, Á. Baltanás & A. Green, 2010. Field evidence of dispersal of branchiopods, ostracods and bryozoans by teal (Anas crecca) in the Camargue (southern France). Hydrobiologia 637: 255–261.Google Scholar
  8. Bunn, S. E. & P. M. Davies, 1990. Why is the stream fauna of south-western Australia so impoverished? Hydrobiologia 194: 169–176.Google Scholar
  9. Byrne, M., D. K. Yeates, L. Joseph, M. Kearney, J. Bowler, M. A. J. Williams, S. Cooper, S. C. Donnellan, J. S. Keogh, R. Leys, J. Melville, J. Murphy, N. Porch & K.-H. Wyrwoll, 2008. Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Molecular Ecology 17: 4398–4417.PubMedGoogle Scholar
  10. Caceres, C. E. & D. A. Soluk, 2002. Blowing in the wind: a field test of overland dispersal and colonization by aquatic invertebrates. Oecologia 131: 402–408.Google Scholar
  11. Chung, P. P., R. V. Hyne, R. M. Mann & J. W. O. Ballard, 2013. The impact of historic isolation on the population biogeography of Melita plumulosa (Crustacea: Melitidae) in eastern Australia. Estuarine, Coastal and Shelf Science 129: 198–205.Google Scholar
  12. Costa, F. O., J. R. de Waard, J. Boutillier, S. Ratnasingham, R. T. Dooh, M. Hajibabaei & P. D. N. Hebert, 2007. Biological identifications through DNA barcodes: the case of the Crustacea. Canadian Journal of Fisheries and Aquatic Sciences 64: 272–296.Google Scholar
  13. Crisp, M., L. Cook & D. Steane, 2004. Radiation of the Australian flora: what can comparisons of molecular phylogenies across multiple taxa tell us about the evolution of diversity in present-day communities? Philosophical Transactions of the Royal Society London B 359: 1551–1571.Google Scholar
  14. Darwin, C. R., 1859. The Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. John Murray, London.Google Scholar
  15. De Deckker, P., 1977. The distribution of the “giant” ostracods (family: Cyprididae, Baird 1845) endemic to Australia. In Löffler, H. & D. Danielopol (eds), Aspects of Ecology and Zoogeography of Recent and Fossil Ostracods. Junk, The Hague: 285–294.Google Scholar
  16. De Deckker, P., 1981. Taxonomy and ecological notes of some ostracods from Australian inland waters. Transactions of the Royal Society of South Australia 105: 91–138.Google Scholar
  17. De Deckker, P., 1982. On Bennelongia tunta De Deckker sp. nov. Stereo Atlas of Ostracod Shells 9: 117–124.Google Scholar
  18. De Deckker, P., J. W. Magee & J. M. G. Shelley, 2011. Late quaternary palaeohydrological changes in the large playa Lake Frome in central Australia, recorded from the Mg/Ca and Sr/Ca in ostracod valves and biotic remains. Journal of Arid Environments 75: 38–50.Google Scholar
  19. De Deckker, P. & K. G. McKenzie, 1981. Bennelongia, a new cypridid ostracod genus from Australasia. Transactions of the Royal Society of South Australia 105: 53–58.Google Scholar
  20. Drummond, A. J. & A. Rambaut, 2007. BEAST: bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7: 214.PubMedCentralPubMedGoogle Scholar
  21. Dumont, H. J., S. Nandini & S. S. S. Sarma, 2002. Cyst ornamentation in aquatic invertebrates: a defence against egg predation. Hydrobiologia 486: 161–167.Google Scholar
  22. Edgar, R. C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792–1797.PubMedCentralPubMedGoogle Scholar
  23. Eitam, A., L. Blaustein, K. Van Damme, H. J. Dumont & K. Martens, 2004. Crustacean species richness in temporary pools: relationships with habitat traits. Hydrobiologia 525: 125–130.Google Scholar
  24. Fontaneto, D., C. Q. Tang, U. Obertegger, F. Leasi & T. G. Barraclough, 2012. Different diversification rates between sexual and asexual organisms. Evolutionary Biology 39: 262–270.Google Scholar
  25. Frey, D. G., 1991. The species of Pleuroxus and three related genera (Anomopoda, Chydoridae) in southern Australia and New Zealand. Records of the Australian Museum 43: 291–372.Google Scholar
  26. Frey, D., 1998. Expanded description of Leberis aenigmatosa Smirnov (Anomopoda: Chydoridae): a further indication of the biological isolation between western and eastern Australia. Hydrobiologia 367: 31–42.Google Scholar
  27. Gibson, N., D. J. Coates & K. R. Thiele, 2007. Taxonomic research and and the conservation status of flora in the Yilgarn BIF ranges. Nuytsia 17: 1–12.Google Scholar
  28. Gibson, N., C. Yates & R. Dillon, 2010. Plant communities of the ironstone ranges of south Western Australia: hotspots for plant diversity and mineral deposits. Biodiversity and Conservation 19: 3951–3962.Google Scholar
  29. Graham, T. B. & D. Wirth, 2008. Dispersal of large branchiopod cysts: potential movement by wind from potholes on the Colorado Plateau. Hydrobiologia 600: 17–27.Google Scholar
  30. Green, A. J., K. M. Jenkins, D. Bell, P. J. Morris & R. T. Kingsford, 2008. The potential role of waterbirds in dispersing invertebrates and plants in arid Australia. Freshwater Biology 53: 380–392.Google Scholar
  31. Green, A. J., M. I. Sanchez, F. Amat, J. Figuerola, F. Hontoria, O. Ruiz & F. Hortas, 2005. Dispersal of invasive and native brine shrimps Artemia (Anostraca) via waterbirds. Limnology and Oceanography 50: 737–742.Google Scholar
  32. Guindon, S., J. F. Dufayard, V. Lefort, M. Anisimova, W. Hordijk & O. Gascuel, 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59: 307–321.PubMedGoogle Scholar
  33. Guzik, M. T., M. A. Adams, N. P. Murphy, S. J. B. Cooper & A. D. Austin, 2012. Desert springs: deep phylogeographic structure in an ancient endemic crustacean (Phreatomerus latipes). PLoS One 7: e37642.PubMedCentralPubMedGoogle Scholar
  34. Hairston Jr, N. G., 1996. Zooplankton egg banks as biotic reservoirs in changing environments. Limnology and Oceanography 41: 1087–1092.Google Scholar
  35. Halse, S. A. & J. M. McRae, 2004. New genera and species of giant ostracods (Crustacea: Cyprididae) from Australia. Hydrobiologia 524: 1–52.Google Scholar
  36. Halse, S. A., G. B. Pearson, C. Hassell, P. Collins, M. D. Scanlon & C. D. T. Minton, 2005. Mandora Marsh, north-western Australia, an arid-zone wetland maintaining continental populations of waterbirds. Emu 105: 115–125.Google Scholar
  37. Hammer, Ø., D. A. T. Harper & P. D. Ryan, 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1): 9.Google Scholar
  38. Hebert, P. & C. Wilson, 2000. Diversity of the genus Daphniopsis in the saline waters of Australia. Canadian Journal of Zoology 78: 794–808.Google Scholar
  39. Ho, S. Y. W. & M. J. Philipps, 2009. Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Systematic Biology 58: 367–380.PubMedGoogle Scholar
  40. Hopper, S. D., 1979. Biogeographical rates of speciation in the southwest Australian flora. Annual Review of Ecology and Systematics 10: 399–422.Google Scholar
  41. Hopper, S. D. & P. Gioia, 2004. The Southwest Australian floristic region: evolution and conservation of a global hotspot of diversity. Annual Review of Ecology and Systematics 35: 623–650.Google Scholar
  42. Horne, D. J. & R. J. Smith, 2004. First British record of Potamocypris humilis (Sars, 1924), a freshwater ostracod with a disjunct distribution in Europe and southern Africa. Bollettino della Societa Paleontologica Italiana 43: 297–306.Google Scholar
  43. Huelsenbeck, J., B. Larget & D. Swofford, 2000. A compound Poisson process for relaxing the molecular clock. Genetics 154: 1879–1892.PubMedCentralPubMedGoogle Scholar
  44. Kass, R. E. & A. E. Raftery, 1995. Bayes factors. Journal of the Americal Statistical Association 90: 773–795.Google Scholar
  45. Kieneke, A., P. M. Marti, N. Arbizu & D. Fontaneto, 2012. Spatially structured populations with a low level of cryptic diversity in European marine Gastrotricha. Molecular Ecology 21: 1239–1254.PubMedGoogle Scholar
  46. King, J. L., M. A. Simovich & R. C. Brusc, 1996. Species richness, endemism and ecology of crustacean assemblages in northern California vernal pools. Hydrobiologia 328: 85–116.Google Scholar
  47. Knowles, L. L., 2000. Tests of pleistocene speciation in montane grasshoppers (genus Melanoplus) from the sky islands of western north America. Evolution 54: 1337–1348.PubMedGoogle Scholar
  48. Knowlton, N. & L. A. Weigt, 1998. New dates and new rates for divergence across the Isthmus of Panama. Proceedings of the Royal Society of London, Series B, Biological Sciences 265: 2257–2263.Google Scholar
  49. Lemey, P., M. Salemi & A.-M. Vandamme, 2009. The Phylogenetic Handbook, 2nd ed. Cambridge University Press, Cambridge.Google Scholar
  50. Maly, E. J. & I. A. E. Bayly, 1991. Factors influencing biogeographic patterns of Australasian centropagid copepods. Journal of Biogeography 18: 455–461.Google Scholar
  51. Martens, K., 1998. Sex and Parthenogenesis: Evolutionary Ecology of Reproductive Modes in Non-marine Ostracods. Backhuys, Leiden.Google Scholar
  52. Martens, K., I. Schön, C. Meisch & D. Horne, 2008. Global diversity of ostracods (Ostracoda, Crustacea) in freshwater. Hydrobiologia 595: 185–193.Google Scholar
  53. Martens, K., S. Halse & I. Schön, 2012. Nine new species of Bennelongia De Deckker & McKenzie, 1981 (Crustacea, Ostracoda) from Western Australia, with the description of a new subfamily. European Journal of Taxonomy 8: 1–56.Google Scholar
  54. Martens, K., S. Halse & I. Schön, 2013. On the Bennelongia barangaroo lineage (Crustacea, Ostracoda) in Western Australia, with the description of seven new species. European Journal of Taxonomy 66: 1–59.Google Scholar
  55. Martens, K., S. Halse & I. Schön, 2015. On the Bennelongia nimala and B. triangulata lineages (Crustacea, Ostracoda) in Western Australia, with the description of six new species. European Journal of Taxonomy 111: 1–36.Google Scholar
  56. Martin, H. A., 2006. Cenozoic climatic changes and the development of the arid vegetation of Australia. Journal of Arid Environments 66: 533–563.Google Scholar
  57. Maynard Smith, J., 1998. Evolutionary Genetics, 2nd ed. Oxford University Press, Oxford.Google Scholar
  58. McGowran, B., G. R. Holdgate, Q. Li & S. J. Gallagher, 2004. Cenozoic stratigraphic succession in southeastern Australia. Australian Journal of Earth Sciences 51: 459–496.Google Scholar
  59. McTainsh, G., Y. C. Chan, H. McGowan, J. Leys & K. Tews, 2005. The 23rd October 2002 dust storm in eastern Australia: characteristics and meteorological conditions. Atmospheric Environments 39: 1227–1236.Google Scholar
  60. Moir, M. L., K. E. C. Brennan & M. S. Harvey, 2009. Diversity, endemism and species turnover of millipedes within the south-western Australian global biodiversity hotspot. Journal of Biogeography 36: 1958–1971.Google Scholar
  61. Morgan, M. J., J. D. Roberts & J. S. Keogh, 2007. Molecular phylogenetic dating supports an ancient endemic speciation model in Australia’s biodiversity hotspot. Molecular Phylogenetics and Evolution 44: 371–385.PubMedGoogle Scholar
  62. Murphy, N. P., M. F. Breed, M. T. Guzik, S. J. B. Cooper & A. D. A. Murphy, 2012. Trapped in desert springs: phylogeography of Australian desert spring snails. Journal of Biogeography 39: 1573–1582.Google Scholar
  63. Myers, N., R. A. Mittermeier, C. G. Mittermeier, G. A. B. da Fonseca & J. Kent, 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853–858.PubMedGoogle Scholar
  64. Nix, H., 1982. Environmental determinants of biogeography and evolution in Terra Australis. In Barker, W. R. & P. J. M. Greenslade (eds), Evolution of the Flora and Fauna of Arid Australia. Peacock Publications, Frewville.Google Scholar
  65. Paradis, E., J. Claude & K. Strimmer, 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289–290.PubMedGoogle Scholar
  66. Pepper, M. P., P. Doughty, M. N. Hutchinson & J. S. Keogh, 2011. Ancient drainages divide cryptic species in Australia’s arid zone: morphological and multi-gene evidence for four new species of Beaked Geckos (Rhynchoedura). Molecular Phylogenetics and Evolution 61: 810–822.PubMedGoogle Scholar
  67. Pinceel, T., L. Brendonck, M. H. D. Larmuseau, M. P. M. Vanholve & B. V. Timms, 2013. Environmental change as a driver of diversification in temporary aquatic habitats: does the genetic structure of extant fairy shrimp populations reflect historic aridification? Freshwater Biology 58: 1556–1572.Google Scholar
  68. Posada, D., 2008. jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 1253–1256.PubMedGoogle Scholar
  69. Proctor, V. W., 1964. Viability of crustacean eggs recovered from ducks. Ecology 45: 656–658.Google Scholar
  70. Pybus, O. G. & P. H. Harvey, 2000. Testing macro-evolutionary models using incomplete molecular phylogenies. Proceedings of the Royal Society of London, Series B, Biological Sciences 267: 2267–2272.Google Scholar
  71. Rabosky, D. L., 2006. LASER: a maximum likelihood toolkit for detecting temporal shifts in diversification rates from molecular phylogenies. Evolutionary Bioinformatics Online 2: 257–260.Google Scholar
  72. Radke, L. C., S. Juggins, S. A. Halse, P. D. De Deckker & T. Finston, 2003. Chemical diversity in south-eastern Australian saline lakes II: biotic implications. Marine and Freshwater Research 54: 895–912.Google Scholar
  73. Remigio, E. A., P. D. N. Hebert & A. Savage, 2001. Phylogenetic relationships and remarkable radiation in Parartemia (Crustacea: Anostraca), the endemic brine shrimp of Australia: evidence from mitochondrial DNA sequences. Biological Journal of the Linnean Society 74: 59–71.Google Scholar
  74. Rix, M. G., D. L. Edwards, M. Byrne, M. S. Harvey, L. Joseph & J. D. Roberts, 2014. Biogeography and speciation of terrestrial fauna in the south-western Australian biodiversity hotspot. Biological Reviews. doi:10.1111/brv.12132.PubMedGoogle Scholar
  75. Roberts, J. D. & L. R. Maxson, 1985. Tertiary speciation models in Australian anurans: molecular data challenge pleistocene scenario. Evolution 39: 325–334.Google Scholar
  76. Ronquist, F., M. Teslenko, P. van der Mark, D. L. Ayres, A. Darling, S. Höhna, B. Larget, L. Liu, M. A. Suchard & J. P. Huelsenbeck, 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542.PubMedCentralPubMedGoogle Scholar
  77. Roshier, D. A., N. I. Klomp & M. Asmus, 2006. Movements of a nomadic waterfowl, Grey Teal Anas gracilis, across inland Australia—results from satellite telemetry spanning fifteen months. Ardea 94: 461–475.Google Scholar
  78. Roshier, D. A., P. H. Whetton, R. J. Allan & A. I. Robertson, 2001. Distribution and persistence of temporary wetland habitats in arid Australia in relation to climate. Australian Ecology 26: 371–384.Google Scholar
  79. Sánchez, B. & D. G. Angeler, 2007. Can fairy shrimps (Crustacea: Anostraca) structure zooplankton communities in temporary ponds? Marine and Freshwater Research 58: 827–834.Google Scholar
  80. Sars, G. O., 1896. On some freshwater Entomostraca from the neighbourhood of Sydney, partly raised from dried mud. Arkiv för matematik og naturvidenskab 18: 1–81.Google Scholar
  81. Schön, I., 2007. Did Pleistocene glaciations shape genetic patterns of European ostracods? A phylogeograpic analysis of two species with asexual reproduction. Hydrobiologia 575: 30–50.Google Scholar
  82. Schön, I., K. Martens & S. A. Halse, 2010. Genetic diversity in Australian ancient asexual Vestalenula (Ostracoda, Darwinulidae): little variability down under. Hydrobiologia 641: 59–70.Google Scholar
  83. Schön, I. & K. Martens, 2012. Molecular analyses of ostracod flocks from Lake Baikal and Lake Tanganyika. Hydrobiologia 682: 91–110.Google Scholar
  84. Schön, I., R. Pinto, S. Halse, A. Smith, K. Martens & C. W. Jr Birky, 2012. Cryptic diversity in putative ancient asexual darwinulids (Crustacea: Ostracoda). PLoS One 7: e39844.PubMedCentralPubMedGoogle Scholar
  85. Schubart, C. D., R. Diesel & S. B. Hedges, 1998. Rapid evolution to terrestrial life in Jamaican crabs. Nature 393: 363–365.Google Scholar
  86. Schwentner, M., B. V. Timms & S. Richter, 2013. Flying with the birds? Recent large-area dispersal of four Australian Limnadopsis species (Crustacea: Branchiopoda: Spinicaudata). Ecology and Evolution 2: 1605–1626.Google Scholar
  87. Schwentner, M., B. Timms & S. Richter, 2014. Evolutionary systematics of the Australian Eocyzicusfauna (Crustacea: Branchiopoda: Spinicaudata) reveals hidden diversity and phylogeographic structure. Journal of Zoological Systematic and Evolutionary Research 52: 15–31.Google Scholar
  88. Shearn, R., A. Koenders, S. A. Halse, I. Schön & K. Martens, 2012. A review of Bennelongia De Deckker & McKenzie, 1981 (Crustacea, Ostracoda) species from eastern Australia with the description of three new species. European Journal of Taxonomy 25: 1–35.Google Scholar
  89. Singh, G., 1982. Environmental upheaval: vegetation of Australasia during the Quarternary. In Smith, J. M. B. (Ed.), A History of Australasian Vegetation. McGraw Hill, Sydney: 90–108.Google Scholar
  90. Skinner, A., M. N. Hutchinson & M. S. Y. Lee, 2013. Phylogeny and divergence times of Australian Sphenomorphus group skinks (Scincidae, Squamata). Molecular Phylogenetics and Evolution 69: 906–918.PubMedGoogle Scholar
  91. Stelbrink, B., C. Albrecht, R. Hall & T. von Rintelen, 2012. The biogeography of Sulawesi revisited: is there evidence for a vicariant origin of taxa on Wallace’s “anomalous island”? Evolution 66: 2252–2271.PubMedGoogle Scholar
  92. Tamura, K., G. Stecher, D. Peterson, A. Filipski & S. Kumar, 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30: 2725–2729.PubMedCentralPubMedGoogle Scholar
  93. Tang, C. Q., U. Obertegger, D. Fontaneto & T. G. Barraclough, 2014. Sexual species are separated by larger genetic gaps than asexual species in rotifers. Evolution. doi:10.1111/evo.12483.
  94. Timms, B., 1982. Coastal dune waterbodies of north-eastern New South Wales. Marine and Freshwater Research 33: 203–222.Google Scholar
  95. Timms, B., 1986. Reconnaissance limnology of some coastal dune lakes of Cape York Peninsula, Queensland. Marine and Freshwater Research 37: 167–176.Google Scholar
  96. Timms, B., 1987. Limnology of Lake Buchanan, a tropical saline lake, and associated pools, of North Queensland. Marine and Freshwater Research 38: 877–884.Google Scholar
  97. Timms, B. V., 1993. Saline lakes of the Paroo, inland New South Wales, Australia. In Hurlbert, S. (Ed.), Saline Lakes. Springer, Dordrecht.Google Scholar
  98. Timms, B. V., 1997. Study of coastal freshwater lakes in southern New South Wales. Marine and Freshwater Research 48: 249–256.Google Scholar
  99. Timms, B. V., 1998. Further studies on the saline lakes of the eastern Paroo, inland New South Wales, Australia. Hydrobiologia 381: 31–42.Google Scholar
  100. Timms, B. V., 2002. The fairy shrimp genus Branchinella Sayce (Crustacea: Anostraca: Thamnocephalidae) in Western Australia, including a description of four new species. Hydrobiologia 486: 71–89.Google Scholar
  101. Timms, B. V., 2008. The ecology of episodic saline lakes of inland eastern Australia, as exemplified by a ten year study of the Rockwell-Wombah lakes of the Paroo. Proceedings of the Linnean Society of New South Wales 129: 1–16.Google Scholar
  102. Toon, A., J. A. Austin, G. Dolman, L. Pedler & L. Joseph, 2012. Evolution of arid zone birds in Australia: Leapfrog distribution patterns and mesic-arid connections in quail-thrush (Cinclosoma, Cinclosomatidae). Molecular Phylogenetics and Evolution 62: 286–295.PubMedGoogle Scholar
  103. Unmack, P. J., 2001. Biogeography of Australian freshwater fish. Journal of Biogeography 28: 1053–1089.Google Scholar
  104. Vanschoenwinkel, B., S. Gielen, M. Seaman & L. Brendonck, 2008a. Any way the wind blows—frequent wind dispersal drives species sorting in ephemeral aquatic communities. Oikos 117: 125–134.Google Scholar
  105. Vanschoenwinkel, B., A. Waterkeyn, T. Nhiwatiwa, T. O. M. Pinceel, E. Spooren, A. Geerts, B. Clegg & L. Brendonck, 2011. Passive external transport of freshwater invertebrates by elephant and other mud-wallowing mammals in an African savannah habitat. Freshwater Biology 56: 1606–1619.Google Scholar
  106. Vanschoenwinkel, B., A. Waterkeyn, T. Vandecaetsbeek, O. Pineau, P. Grillas & L. Brendonck, 2008b. Dispersal of freshwater invertebrates by large terrestrial mammals: a case study with wild boar (Sus scrofa) in Mediterranean wetlands. Freshwater Biology 53: 2264–2273.Google Scholar
  107. Wilke, T., R. Schultheiß & C. Albrecht, 2009. As time goes by: a simple fool’s guide to molecular clock approaches in invertebrates. American Malacological Bulletin 27: 25–45.Google Scholar
  108. Wilke, T., R. Schultheiß, C. Albrecht, N. Bornmann, S. Trajanovski & T. Kevrekidis, 2010. Native Dreissena freshwater mussels in the Balkans: in and out of ancient lakes. Biogeosciences Discussions 7: 4425–4461.Google Scholar
  109. Xia, X., 2013. DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Molecular Biology and Evolution 30: 1720–1728.sl.PubMedCentralPubMedGoogle Scholar
  110. Xia, X. & P. Lemey, 2009. Assessing substitution saturation with DAMBE. In Lemey, P., M. Salemi & A.-M. Vandamme (eds), The Phylogenetic Handbook: A Practical Approach to DNA and Protein Phylogeny, 2nd ed. Cambridge University Press, Cambridge: 615–630.Google Scholar
  111. Xia, X., Z. Xie, M. Salemi, L. Chen & Y. Wang, 2003. An index of substitution saturation and its application. Molecular Phylogenetics and Evolution 26: 1–7.PubMedGoogle Scholar
  112. Yan, Y., A. J. Harris & H. Xingjin, 2010. S-DIVA (Statistical Dispersal-Vicariance Analysis): a tool for inferring biogeographic histories. Molecular Phylogenetics and Evolution 56: 848–850.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Isa Schön
    • 1
    • 2
  • Rylan Shearn
    • 3
  • Koen Martens
    • 1
    • 4
  • Annette Koenders
    • 3
  • Stuart Halse
    • 5
  1. 1.Department of Freshwater BiologyRoyal Belgian Institute of Natural SciencesBrusselsBelgium
  2. 2.Research Group ZoologyUniversity of HasseltDiepenbeekBelgium
  3. 3.Centre for Ecosystem ManagementEdith Cowan UniversityJoondalupAustralia
  4. 4.Department of BiologyUniversity of GhentGhentBelgium
  5. 5.Bennelongia Environmental ConsultantsJolimontAustralia

Personalised recommendations