Contrasting response of two shallow eutrophic cold temperate lakes to a partial winterkill of fish

Abstract

Food-web effects of winterkill are difficult to predict as the enhanced mortality of planktivorous fish may be counterbalanced by an even higher mortality of piscivores. We hypothesised that a winterkill in a clear and a turbid shallow lake would equalise their fish community composition, but seasonal plankton successions would differ between lakes. After a partial winterkill, we observed a reduction of fish biomass by 16 and 43% in a clear-water and a turbid small temperate lake, respectively. Fish biomass and piscivore shares (5% of fish biomass) were similar in both lakes after this winterkill, but young-of-the-year (YOY) abundances were higher in the turbid lake. Top-down control by crustaceans was only partly responsible for low phytoplankton biomass at the end of May following the winterkill in both lakes. Summer phytoplankton biomass remained low in the clear-water lake despite high abundances of YOY fish (mainly roach). In contrast, the crustacean biomass of the turbid lake was reduced in summer by a high YOY abundance (sunbleak and roach), leading to a strong increase in phytoplankton biomass. The YOY abundance of fish in shallow eutrophic lakes may thus be more important for their summer phytoplankton development after winterkill than the relative abundance of piscivores.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Bakker, E. S., J. M. Sarneel, R. D. Gulati, Z. Liu & E. van Donk, 2013. Restoring macrophyte diversity in shallow temperate lakes: biotic versus abiotic constraints. Hydrobiologia 710: 23–37.

    Article  Google Scholar 

  2. Balayla, D., T. L. Lauridsen, M. Søndergaard & E. Jeppesen, 2010. Larger zooplankton in Danish lakes after cold winters: are winter fish kills of importance? Hydrobiologia 646: 159–172.

    Article  CAS  Google Scholar 

  3. Breukelaar, A. W., E. H. R. R. Lammens, J. G. P. Klein Breteler & I. Tatrai, 1994. Effects of benthivorous bream (Abramis brama) and carp (Cyprinus carpio) on sediment resuspension and concentrations of nutrients and chlorophyll-a. Freshwater Biology 32: 113–121.

    Article  Google Scholar 

  4. Brönmark, C. & S. E. B. Weisner, 1992. Indirect effects of fish community structure on submerged vegetation in shallow, eutrophic lakes: an alternative mechanism. Hydrobiologia 243(244): 293–301.

    Article  Google Scholar 

  5. Brothers, S., S. Hilt, S. Meyer & J. Köhler, 2013. Plant community structure determines primary productivity in shallow, eutrophic lakes. Freshwater Biology 58: 2264–2276.

    CAS  Google Scholar 

  6. Brothers, S., J. Köhler, K. Attermeyer, H. P. Grossart, T. Mehner, N. Meyer, K. Scharnweber & S. Hilt, 2014. A feedback loop links brownification and anoxia in a temperate, shallow lake. Limnology and Oceanography 59: 1388–1398.

    Article  CAS  Google Scholar 

  7. Burks, R. L., D. M. Lodge, E. Jeppesen & T. L. Lauridsen, 2002. Diel horizontal migration of zooplankton: costs and benefits of inhabiting the littoral. Freshwater Biology 47: 343–365.

    Article  Google Scholar 

  8. Casselman, J. M. & H. H. Harvey, 1975. Selective fish mortality resulting from low winter oxygen. Verhandlungen der Internationalen Vereinigung für Limnologie 19: 2418–2429.

    Google Scholar 

  9. Christoffersen, K., B. Rieman, A. Klysner & M. Søndergaard, 1993. Potential role of fish predation and natural populations of zooplankton in structuring a plankton community in eutrophic lake water. Limnology and Oceanography 38: 561–573.

    Article  Google Scholar 

  10. Crowder, L. B., 1985. Optimal foraging and feeding mode shifts in fishes. Environmental Biology of Fishes 12: 57–62.

    Article  Google Scholar 

  11. Cryer, M., G. Peirson & C. R. Townsend, 1986. Reciprocal interactions between roach, Rutilus rutilus, and zooplankton in a small lake—prey dynamics and fish growth and recruitment. Limnology and Oceanography 31: 1022–1038.

    Article  Google Scholar 

  12. Danylchuk, A. & W. Tonn, 2006. Natural disturbance and life history: consequences of winterkill on fathead minnow in boreal lakes. Journal of Fish Biology 68: 681–694.

    Article  Google Scholar 

  13. DEV, 2009. Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung. VCH Verlagsgesellschaft mbH, Beuth Verlag GmbH, Weinheim.

    Google Scholar 

  14. Doudoroff, P. & D. L. Shumway, 1970. Dissolved oxygen requirements of freshwater fishes. FAO Fish. Technical Paper No 86

  15. Dumont, H. J., I. van de Velde & S. Dumont, 1975. The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19: 75–97.

    Article  Google Scholar 

  16. Gaedke, U., 1992. The size distribution of plankton biomass in a large lake and its seasonal variability. Limnology and Oceanography 37: 1202–1220.

    Article  Google Scholar 

  17. Gaedke, U. & D. Straile, 1998. Daphnids: keystone species for the pelagic food web structure and energy flow—a body size related analysis linking seasonal changes on the population and ecosystem level. Archiv für Hydrobiologie Special Issues Advanced Limnology 53: 587–610.

    Google Scholar 

  18. Gaedke, U., A. Seifried & R. Adrian, 2004. Biomass size spectra and plankton diversity in a shallow eutrophic lake. Internationale Revue der Gesamten Hydrobiologie 89: 1–20.

    Article  Google Scholar 

  19. Greenbank, J. T., 1945. Limnological conditions in ice-covered lakes, especially related to winter-kill of fish. Ecological Monographs 15: 344–392.

    Article  Google Scholar 

  20. Grimm, M. P. & J. J. G. M. Backx, 1990. The restoration of shallow eutrophic lakes, and the role of northern pike, aquatic vegetation and nutrient concentration. Hydrobiologia 200: 557–566.

    Article  Google Scholar 

  21. Hammer, Ø., D. A. T. Harper & P. D. Ryan, 2001. PAST: Paleontological Statistics software package for education and data analysis. Palaeontologia Electronica 4: 1–9.

    Google Scholar 

  22. Haney, J. F. & D. J. Hall, 1973. Sugar-coated Daphnia: a preservation technique for Cladocera. Limnology & Oceanography 18: 331–333.

    Article  Google Scholar 

  23. Hansson, L.-A., H. Annadotter, E. Bergman, S. F. Hamrin, E. Jeppesen, T. Kairesalo, E. Luokkanen, P.-A. Nilsson, M. Søndergaard & J. Strand, 1998. Biomanipulation as an application of food-chain theory: constraints, synthesis, and recommendations for temperate lakes. Ecosystems 1: 558–574.

    Article  Google Scholar 

  24. Hilt, S., 2006. Recovery of Potamogeton pectinatus stands in a shallow eutrophic lake under extreme grazing pressure. Hydrobiologia 570: 95–99.

    Article  Google Scholar 

  25. Hilt, S. & E. M. Gross, 2008. Can allelopathically active submerged macrophytes stabilise clear-water states in shallow eutrophic lakes? Basic and Applied Ecology 9: 422–432.

    Article  Google Scholar 

  26. Hilt, S., E. M. Gross, M. Hupfer, H. Morscheid, J. Mählmann, A. Melzer, J. Poltz, S. Sandrock, E.-M. Scharf, S. Schneider & K. van de Weyer, 2006. Restoration of submerged vegetation in shallow eutrophic lakes—guideline and state of the art in Germany. Limnologica 36: 155–171.

    Article  CAS  Google Scholar 

  27. Hilt, S., R. Adrian, J. Köhler, M. T. Monaghan & C. D. Sayer, 2013. Clear, crashing, turbid and back—long-term changes of macrophyte assemblages in a shallow lake. Freshwater Biology 58: 2027–2036.

    Article  Google Scholar 

  28. Jacobsen, L. & M. R. Perrow, 1998. Predation risk from piscivorous fish influencing the diel use of macrophytes by planktivorous fish in experimental ponds. Ecology of Freshwater Fish 7: 78–86.

    Article  Google Scholar 

  29. Jacobsen, L., S. Berg, N. Jepsen & C. Skov, 2004. Does roach behaviour differ between shallow lakes of different environmental state? Journal of Fish Biology 65: 135–147.

    Article  Google Scholar 

  30. Jeppesen, E., J. P. Jensen, M. Søndergaard, T. Lauridsen, L. J. Pedersen & L. Jensen, 1997. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342: 151–164.

    Article  Google Scholar 

  31. Jeppesen, E., M. Meerhoff, K. Holmgren, I. Gonzalez-Bergonzoni, F. Teixeira-de Mello, S. A. J. Declerck, L. De Meester, M. Søndergaard, T. L. Lauridsen, R. Bjerring, J. M. Conde-Porcuna, N. Mazzeo, C. Iglesias, M. Reizenstein, H. J. Malmquist, Z. Liu, D. Balayla & X. Lazzaro, 2010. Impacts of climate warming on lake fish community structure and potential effects on ecosystem function. Hydrobiologia 646: 73–90.

    Article  CAS  Google Scholar 

  32. Körner, S., 2002. Loss of submerged macrophytes in shallow lakes in north-eastern Germany. International Revue of Hydrobiology 87: 375–384.

    Article  Google Scholar 

  33. Körner, S. & T. Dugdale, 2003. Is roach herbivory preventing re-colonization of a shallow lake with submerged macrophytes? Hydrobiologia 506: 497–501.

    Article  Google Scholar 

  34. Kosten, S., A. Kamarainen, E. Jeppesen, E. H. van Nes, E. T. H. M. Peeters, N. Mazzeo, L. Sass, J. Hauxwell, N. Hansel-Welch, T. L. Lauridsen, M. Søndergaard, R. W. Bachmann, G. Lacerot & M. Scheffer, 2009. Climate related differences in the dominance of submerged macrophytes in shallow lakes. Global Change Biology 15: 2503–2517.

    Article  Google Scholar 

  35. Kreyling, J., 2010. Winter climate change: a critical factor for temperate vegetation performance. Ecology 91: 1939–1948.

    Article  PubMed  Google Scholar 

  36. Livingstone, D. M. & R. Adrian, 2009. Modeling the duration of intermittent ice cover on a lake for climate-change studies. Limnology & Oceanography 54: 1709–1722.

    Article  Google Scholar 

  37. Meijer, M. L., M. W. DeHaan, A. W. Breukelaar & H. Buiteveld, 1990. Is reduction of the benthivorous fish an important cause of high transparency following biomanipulation in shallow lakes. Hydrobiologia 200: 303–315.

    Article  Google Scholar 

  38. Meijer, M. L., I. De Boois, M. Scheffer, R. Portielje & H. Hosper, 1999. Biomanipulation in shallow lakes in The Netherlands: an evaluation of 18 case studies. Hydrobiologia 408(409): 13–30.

    Article  Google Scholar 

  39. Mjelde, M. & B. A. Faafeng, 1997. Ceratophyllum demersum hampers phytoplankton development in some small Norwegian lakes over a wide range of phosphorus concentrations and geographical latitude. Freshwater Biology 37: 355–365.

    Article  Google Scholar 

  40. Moss, B., 1990. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia 200(201): 367–377.

    Article  Google Scholar 

  41. Persson, L. & L. A. Greenberg, 1990. Juvenile competitive bottlenecks: the perch (Perca fluviatilis)—roach (Rutilus rutilus) interaction. Ecology 71: 44–56.

    Article  Google Scholar 

  42. Persson, L., S. Diehl, L. Johansson, G. Andersson & S. F. Hamrin, 1991. Shifts in fish communities along the productivity gradient of temperate lakes—patterns and the importance of size-structured interactions. Journal of Fish Biology 38: 281–293.

    Article  Google Scholar 

  43. Peterson, B. J. & B. Fry, 1987. Stable isotopes in ecosystem studies. Annual Reviews in Ecology and Systematics 18: 293–320.

    Article  Google Scholar 

  44. Pinder, A. C., R. E. Gozlan, K. Beyer & J. A. B. Bass, 2005. Ontogenetic induced shifts in the ecology of sunbleak Leucaspius delineatus during early development. Journal of Fish Biology 67: 205–217.

    Article  Google Scholar 

  45. Pinnegar, J. K. & N. V. C. Polunin, 1999. Differential fractionation of δ13C and δ15N among fish tissues: implications for the study of trophic interactions. Functional Ecology 13: 225–231.

    Article  Google Scholar 

  46. Rimoldi, S., G. Terova, P. Ceccuzzi, S. Marelli, M. Antonini & M. Saroglia, 2012. HIF-1α mRNA levels in Eurasian perch (Perca fluviatilis) exposed to acute and chronic hypoxia. Molecular Biology Reports 39: 4009–4015.

    Article  CAS  PubMed  Google Scholar 

  47. Romare, P. & E. Bergman, 1999. Juvenile fish expansion following biomanipulation and its effect on zooplankton. Hydrobiologia 404: 89–97.

    Article  Google Scholar 

  48. Ruuhijärvi, J., M. Rask, S. Vesala, A. Westermark, M. Olin, J. Keskitalo & A. Lehtovaara, 2010. Recovery of the fish community and changes in the lower trophic levels in a eutrophic lake after a winter kill of fish. Hydrobiologia 646: 145–158.

    Article  Google Scholar 

  49. Sayer, C. D., T. A. Davidson & J. I. Jones, 2010. Seasonal dynamics of macrophytes and phytoplankton in shallow lakes: a eutrophication-driven pathway from plants to plankton? Freshwater Biology 55: 500–513.

    Article  CAS  Google Scholar 

  50. Scharnweber, K., J. Syväranta, S. Hilt, M. Brauns, M. J. Vanni, S. Brothers, J. Köhler, J. Knežević-Jarić & T. Mehner, 2014. Whole-lake experiments reveal the fate of terrestrial particulate organic carbon in benthic food webs of shallow lakes. Ecology 95: 1496–1505.

    Article  CAS  PubMed  Google Scholar 

  51. Scheffer, M., S. H. Hosper, M. L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology and Evolution 8: 275–279.

    Article  CAS  PubMed  Google Scholar 

  52. Schindler, D. W. & G. W. Comita, 1972. The dependence of primary production upon physical and chemical factors in a small, senescing lake, including the effect of complete winter oxygen depletion. Archiv für Hydrobiologie 69: 413–451.

    Google Scholar 

  53. Shatwell, T., A. Nicklisch & J. Köhler, 2012. Temperature and photoperiod effects of phytoplankton growing under simulated mixed layer light fluctuations. Limnology & Oceanography 57: 541–553.

    Article  Google Scholar 

  54. Timms, R. M. & B. Moss, 1984. Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing, in the presence of zooplanktivorous fish, in a shallow wetland ecosystem. Limnology & Oceanography 29: 472–486.

    Article  Google Scholar 

  55. Windell, J. T., 1968. Food analysis and rate of digestion. In Ricker, W. E. (ed.), Methods for Assessment of Fish Production in Fresh Waters. Blackwell Scientific Publications, Oxford: 197–203.

    Google Scholar 

Download references

Acknowledgements

We thank Annika Becker, Kay Brennecke, Hans-Jürgen Exner, Jörg Gelbrecht, Marianne Graupe, Thomas Hintze, Antje Lüder, Barbara Meinck, Sari Oksanen, Thomas Rossoll, Steffi Schuchort, Grit Siegert, Robert Tarasz, Alexander Türck, Asja Vogt and Elke Zwirnmann for their technical assistance and chemical analyses. We also thank Sabine Schmidt-Halewicz (Limsa Gewässerbüro Konstanz) for zooplankton determination and length measurements. Access to our study lakes and background information was granted by the Biosphärenreservat Schorfheide-Chorin, Förderverein Feldberg-Uckermärkische Seen e.V., and Stiftung Pro Artenvielfalt. This study was part of the TERRALAC-project financed by the Leibniz Association (WGL). Jari Syväranta was supported by the IGB Fellowship program in Freshwater Science and Kristin Scharnweber was further supported by the German Academic Exchange Service (DAAD).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sabine Hilt.

Additional information

Handling editor: Mariana Meerhoff

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hilt, S., Wanke, T., Scharnweber, K. et al. Contrasting response of two shallow eutrophic cold temperate lakes to a partial winterkill of fish. Hydrobiologia 749, 31–42 (2015). https://doi.org/10.1007/s10750-014-2143-7

Download citation

Keywords

  • Anoxia
  • Fish
  • Regime shifts
  • Roach
  • Shallow lakes
  • Submerged macrophytes