Advertisement

Hydrobiologia

, Volume 749, Issue 1, pp 31–42 | Cite as

Contrasting response of two shallow eutrophic cold temperate lakes to a partial winterkill of fish

  • Sabine HiltEmail author
  • Thomas Wanke
  • Kristin Scharnweber
  • Mario Brauns
  • Jari Syväranta
  • Soren Brothers
  • Ursula Gaedke
  • Jan Köhler
  • Betty Lischke
  • Thomas Mehner
Primary Research Paper

Abstract

Food-web effects of winterkill are difficult to predict as the enhanced mortality of planktivorous fish may be counterbalanced by an even higher mortality of piscivores. We hypothesised that a winterkill in a clear and a turbid shallow lake would equalise their fish community composition, but seasonal plankton successions would differ between lakes. After a partial winterkill, we observed a reduction of fish biomass by 16 and 43% in a clear-water and a turbid small temperate lake, respectively. Fish biomass and piscivore shares (5% of fish biomass) were similar in both lakes after this winterkill, but young-of-the-year (YOY) abundances were higher in the turbid lake. Top-down control by crustaceans was only partly responsible for low phytoplankton biomass at the end of May following the winterkill in both lakes. Summer phytoplankton biomass remained low in the clear-water lake despite high abundances of YOY fish (mainly roach). In contrast, the crustacean biomass of the turbid lake was reduced in summer by a high YOY abundance (sunbleak and roach), leading to a strong increase in phytoplankton biomass. The YOY abundance of fish in shallow eutrophic lakes may thus be more important for their summer phytoplankton development after winterkill than the relative abundance of piscivores.

Keywords

Anoxia Fish Regime shifts Roach Shallow lakes Submerged macrophytes 

Notes

Acknowledgements

We thank Annika Becker, Kay Brennecke, Hans-Jürgen Exner, Jörg Gelbrecht, Marianne Graupe, Thomas Hintze, Antje Lüder, Barbara Meinck, Sari Oksanen, Thomas Rossoll, Steffi Schuchort, Grit Siegert, Robert Tarasz, Alexander Türck, Asja Vogt and Elke Zwirnmann for their technical assistance and chemical analyses. We also thank Sabine Schmidt-Halewicz (Limsa Gewässerbüro Konstanz) for zooplankton determination and length measurements. Access to our study lakes and background information was granted by the Biosphärenreservat Schorfheide-Chorin, Förderverein Feldberg-Uckermärkische Seen e.V., and Stiftung Pro Artenvielfalt. This study was part of the TERRALAC-project financed by the Leibniz Association (WGL). Jari Syväranta was supported by the IGB Fellowship program in Freshwater Science and Kristin Scharnweber was further supported by the German Academic Exchange Service (DAAD).

References

  1. Bakker, E. S., J. M. Sarneel, R. D. Gulati, Z. Liu & E. van Donk, 2013. Restoring macrophyte diversity in shallow temperate lakes: biotic versus abiotic constraints. Hydrobiologia 710: 23–37.CrossRefGoogle Scholar
  2. Balayla, D., T. L. Lauridsen, M. Søndergaard & E. Jeppesen, 2010. Larger zooplankton in Danish lakes after cold winters: are winter fish kills of importance? Hydrobiologia 646: 159–172.CrossRefGoogle Scholar
  3. Breukelaar, A. W., E. H. R. R. Lammens, J. G. P. Klein Breteler & I. Tatrai, 1994. Effects of benthivorous bream (Abramis brama) and carp (Cyprinus carpio) on sediment resuspension and concentrations of nutrients and chlorophyll-a. Freshwater Biology 32: 113–121.CrossRefGoogle Scholar
  4. Brönmark, C. & S. E. B. Weisner, 1992. Indirect effects of fish community structure on submerged vegetation in shallow, eutrophic lakes: an alternative mechanism. Hydrobiologia 243(244): 293–301.CrossRefGoogle Scholar
  5. Brothers, S., S. Hilt, S. Meyer & J. Köhler, 2013. Plant community structure determines primary productivity in shallow, eutrophic lakes. Freshwater Biology 58: 2264–2276.Google Scholar
  6. Brothers, S., J. Köhler, K. Attermeyer, H. P. Grossart, T. Mehner, N. Meyer, K. Scharnweber & S. Hilt, 2014. A feedback loop links brownification and anoxia in a temperate, shallow lake. Limnology and Oceanography 59: 1388–1398.CrossRefGoogle Scholar
  7. Burks, R. L., D. M. Lodge, E. Jeppesen & T. L. Lauridsen, 2002. Diel horizontal migration of zooplankton: costs and benefits of inhabiting the littoral. Freshwater Biology 47: 343–365.CrossRefGoogle Scholar
  8. Casselman, J. M. & H. H. Harvey, 1975. Selective fish mortality resulting from low winter oxygen. Verhandlungen der Internationalen Vereinigung für Limnologie 19: 2418–2429.Google Scholar
  9. Christoffersen, K., B. Rieman, A. Klysner & M. Søndergaard, 1993. Potential role of fish predation and natural populations of zooplankton in structuring a plankton community in eutrophic lake water. Limnology and Oceanography 38: 561–573.CrossRefGoogle Scholar
  10. Crowder, L. B., 1985. Optimal foraging and feeding mode shifts in fishes. Environmental Biology of Fishes 12: 57–62.CrossRefGoogle Scholar
  11. Cryer, M., G. Peirson & C. R. Townsend, 1986. Reciprocal interactions between roach, Rutilus rutilus, and zooplankton in a small lake—prey dynamics and fish growth and recruitment. Limnology and Oceanography 31: 1022–1038.CrossRefGoogle Scholar
  12. Danylchuk, A. & W. Tonn, 2006. Natural disturbance and life history: consequences of winterkill on fathead minnow in boreal lakes. Journal of Fish Biology 68: 681–694.CrossRefGoogle Scholar
  13. DEV, 2009. Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung. VCH Verlagsgesellschaft mbH, Beuth Verlag GmbH, Weinheim.Google Scholar
  14. Doudoroff, P. & D. L. Shumway, 1970. Dissolved oxygen requirements of freshwater fishes. FAO Fish. Technical Paper No 86Google Scholar
  15. Dumont, H. J., I. van de Velde & S. Dumont, 1975. The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19: 75–97.CrossRefGoogle Scholar
  16. Gaedke, U., 1992. The size distribution of plankton biomass in a large lake and its seasonal variability. Limnology and Oceanography 37: 1202–1220.CrossRefGoogle Scholar
  17. Gaedke, U. & D. Straile, 1998. Daphnids: keystone species for the pelagic food web structure and energy flow—a body size related analysis linking seasonal changes on the population and ecosystem level. Archiv für Hydrobiologie Special Issues Advanced Limnology 53: 587–610.Google Scholar
  18. Gaedke, U., A. Seifried & R. Adrian, 2004. Biomass size spectra and plankton diversity in a shallow eutrophic lake. Internationale Revue der Gesamten Hydrobiologie 89: 1–20.CrossRefGoogle Scholar
  19. Greenbank, J. T., 1945. Limnological conditions in ice-covered lakes, especially related to winter-kill of fish. Ecological Monographs 15: 344–392.CrossRefGoogle Scholar
  20. Grimm, M. P. & J. J. G. M. Backx, 1990. The restoration of shallow eutrophic lakes, and the role of northern pike, aquatic vegetation and nutrient concentration. Hydrobiologia 200: 557–566.CrossRefGoogle Scholar
  21. Hammer, Ø., D. A. T. Harper & P. D. Ryan, 2001. PAST: Paleontological Statistics software package for education and data analysis. Palaeontologia Electronica 4: 1–9.Google Scholar
  22. Haney, J. F. & D. J. Hall, 1973. Sugar-coated Daphnia: a preservation technique for Cladocera. Limnology & Oceanography 18: 331–333.CrossRefGoogle Scholar
  23. Hansson, L.-A., H. Annadotter, E. Bergman, S. F. Hamrin, E. Jeppesen, T. Kairesalo, E. Luokkanen, P.-A. Nilsson, M. Søndergaard & J. Strand, 1998. Biomanipulation as an application of food-chain theory: constraints, synthesis, and recommendations for temperate lakes. Ecosystems 1: 558–574.CrossRefGoogle Scholar
  24. Hilt, S., 2006. Recovery of Potamogeton pectinatus stands in a shallow eutrophic lake under extreme grazing pressure. Hydrobiologia 570: 95–99.CrossRefGoogle Scholar
  25. Hilt, S. & E. M. Gross, 2008. Can allelopathically active submerged macrophytes stabilise clear-water states in shallow eutrophic lakes? Basic and Applied Ecology 9: 422–432.CrossRefGoogle Scholar
  26. Hilt, S., E. M. Gross, M. Hupfer, H. Morscheid, J. Mählmann, A. Melzer, J. Poltz, S. Sandrock, E.-M. Scharf, S. Schneider & K. van de Weyer, 2006. Restoration of submerged vegetation in shallow eutrophic lakes—guideline and state of the art in Germany. Limnologica 36: 155–171.CrossRefGoogle Scholar
  27. Hilt, S., R. Adrian, J. Köhler, M. T. Monaghan & C. D. Sayer, 2013. Clear, crashing, turbid and back—long-term changes of macrophyte assemblages in a shallow lake. Freshwater Biology 58: 2027–2036.CrossRefGoogle Scholar
  28. Jacobsen, L. & M. R. Perrow, 1998. Predation risk from piscivorous fish influencing the diel use of macrophytes by planktivorous fish in experimental ponds. Ecology of Freshwater Fish 7: 78–86.CrossRefGoogle Scholar
  29. Jacobsen, L., S. Berg, N. Jepsen & C. Skov, 2004. Does roach behaviour differ between shallow lakes of different environmental state? Journal of Fish Biology 65: 135–147.CrossRefGoogle Scholar
  30. Jeppesen, E., J. P. Jensen, M. Søndergaard, T. Lauridsen, L. J. Pedersen & L. Jensen, 1997. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342: 151–164.CrossRefGoogle Scholar
  31. Jeppesen, E., M. Meerhoff, K. Holmgren, I. Gonzalez-Bergonzoni, F. Teixeira-de Mello, S. A. J. Declerck, L. De Meester, M. Søndergaard, T. L. Lauridsen, R. Bjerring, J. M. Conde-Porcuna, N. Mazzeo, C. Iglesias, M. Reizenstein, H. J. Malmquist, Z. Liu, D. Balayla & X. Lazzaro, 2010. Impacts of climate warming on lake fish community structure and potential effects on ecosystem function. Hydrobiologia 646: 73–90.CrossRefGoogle Scholar
  32. Körner, S., 2002. Loss of submerged macrophytes in shallow lakes in north-eastern Germany. International Revue of Hydrobiology 87: 375–384.CrossRefGoogle Scholar
  33. Körner, S. & T. Dugdale, 2003. Is roach herbivory preventing re-colonization of a shallow lake with submerged macrophytes? Hydrobiologia 506: 497–501.CrossRefGoogle Scholar
  34. Kosten, S., A. Kamarainen, E. Jeppesen, E. H. van Nes, E. T. H. M. Peeters, N. Mazzeo, L. Sass, J. Hauxwell, N. Hansel-Welch, T. L. Lauridsen, M. Søndergaard, R. W. Bachmann, G. Lacerot & M. Scheffer, 2009. Climate related differences in the dominance of submerged macrophytes in shallow lakes. Global Change Biology 15: 2503–2517.CrossRefGoogle Scholar
  35. Kreyling, J., 2010. Winter climate change: a critical factor for temperate vegetation performance. Ecology 91: 1939–1948.CrossRefPubMedGoogle Scholar
  36. Livingstone, D. M. & R. Adrian, 2009. Modeling the duration of intermittent ice cover on a lake for climate-change studies. Limnology & Oceanography 54: 1709–1722.CrossRefGoogle Scholar
  37. Meijer, M. L., M. W. DeHaan, A. W. Breukelaar & H. Buiteveld, 1990. Is reduction of the benthivorous fish an important cause of high transparency following biomanipulation in shallow lakes. Hydrobiologia 200: 303–315.CrossRefGoogle Scholar
  38. Meijer, M. L., I. De Boois, M. Scheffer, R. Portielje & H. Hosper, 1999. Biomanipulation in shallow lakes in The Netherlands: an evaluation of 18 case studies. Hydrobiologia 408(409): 13–30.CrossRefGoogle Scholar
  39. Mjelde, M. & B. A. Faafeng, 1997. Ceratophyllum demersum hampers phytoplankton development in some small Norwegian lakes over a wide range of phosphorus concentrations and geographical latitude. Freshwater Biology 37: 355–365.CrossRefGoogle Scholar
  40. Moss, B., 1990. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia 200(201): 367–377.CrossRefGoogle Scholar
  41. Persson, L. & L. A. Greenberg, 1990. Juvenile competitive bottlenecks: the perch (Perca fluviatilis)—roach (Rutilus rutilus) interaction. Ecology 71: 44–56.CrossRefGoogle Scholar
  42. Persson, L., S. Diehl, L. Johansson, G. Andersson & S. F. Hamrin, 1991. Shifts in fish communities along the productivity gradient of temperate lakes—patterns and the importance of size-structured interactions. Journal of Fish Biology 38: 281–293.CrossRefGoogle Scholar
  43. Peterson, B. J. & B. Fry, 1987. Stable isotopes in ecosystem studies. Annual Reviews in Ecology and Systematics 18: 293–320.CrossRefGoogle Scholar
  44. Pinder, A. C., R. E. Gozlan, K. Beyer & J. A. B. Bass, 2005. Ontogenetic induced shifts in the ecology of sunbleak Leucaspius delineatus during early development. Journal of Fish Biology 67: 205–217.CrossRefGoogle Scholar
  45. Pinnegar, J. K. & N. V. C. Polunin, 1999. Differential fractionation of δ13C and δ15N among fish tissues: implications for the study of trophic interactions. Functional Ecology 13: 225–231.CrossRefGoogle Scholar
  46. Rimoldi, S., G. Terova, P. Ceccuzzi, S. Marelli, M. Antonini & M. Saroglia, 2012. HIF-1α mRNA levels in Eurasian perch (Perca fluviatilis) exposed to acute and chronic hypoxia. Molecular Biology Reports 39: 4009–4015.CrossRefPubMedGoogle Scholar
  47. Romare, P. & E. Bergman, 1999. Juvenile fish expansion following biomanipulation and its effect on zooplankton. Hydrobiologia 404: 89–97.CrossRefGoogle Scholar
  48. Ruuhijärvi, J., M. Rask, S. Vesala, A. Westermark, M. Olin, J. Keskitalo & A. Lehtovaara, 2010. Recovery of the fish community and changes in the lower trophic levels in a eutrophic lake after a winter kill of fish. Hydrobiologia 646: 145–158.CrossRefGoogle Scholar
  49. Sayer, C. D., T. A. Davidson & J. I. Jones, 2010. Seasonal dynamics of macrophytes and phytoplankton in shallow lakes: a eutrophication-driven pathway from plants to plankton? Freshwater Biology 55: 500–513.CrossRefGoogle Scholar
  50. Scharnweber, K., J. Syväranta, S. Hilt, M. Brauns, M. J. Vanni, S. Brothers, J. Köhler, J. Knežević-Jarić & T. Mehner, 2014. Whole-lake experiments reveal the fate of terrestrial particulate organic carbon in benthic food webs of shallow lakes. Ecology 95: 1496–1505.CrossRefPubMedGoogle Scholar
  51. Scheffer, M., S. H. Hosper, M. L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology and Evolution 8: 275–279.CrossRefPubMedGoogle Scholar
  52. Schindler, D. W. & G. W. Comita, 1972. The dependence of primary production upon physical and chemical factors in a small, senescing lake, including the effect of complete winter oxygen depletion. Archiv für Hydrobiologie 69: 413–451.Google Scholar
  53. Shatwell, T., A. Nicklisch & J. Köhler, 2012. Temperature and photoperiod effects of phytoplankton growing under simulated mixed layer light fluctuations. Limnology & Oceanography 57: 541–553.CrossRefGoogle Scholar
  54. Timms, R. M. & B. Moss, 1984. Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing, in the presence of zooplanktivorous fish, in a shallow wetland ecosystem. Limnology & Oceanography 29: 472–486.CrossRefGoogle Scholar
  55. Windell, J. T., 1968. Food analysis and rate of digestion. In Ricker, W. E. (ed.), Methods for Assessment of Fish Production in Fresh Waters. Blackwell Scientific Publications, Oxford: 197–203.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sabine Hilt
    • 1
    Email author
  • Thomas Wanke
    • 1
    • 2
  • Kristin Scharnweber
    • 1
    • 3
    • 4
  • Mario Brauns
    • 1
    • 5
  • Jari Syväranta
    • 1
    • 6
  • Soren Brothers
    • 1
    • 7
  • Ursula Gaedke
    • 8
  • Jan Köhler
    • 1
  • Betty Lischke
    • 8
  • Thomas Mehner
    • 1
  1. 1.Department of Ecosystem ResearchLeibniz-Institute of Freshwater Ecology and Inland FisheriesBerlinGermany
  2. 2.Institute of Inland FisheriesPotsdamGermany
  3. 3.Freie Universität BerlinBerlinGermany
  4. 4.Department of Ecology and Genetics, Limnology, Evolutionary Biology CentreUppsala UniversityUppsalaSweden
  5. 5.Helmholtz Centre for Environmental Research GmbHMagdeburgGermany
  6. 6.Department of Biological and Environmental SciencesUniversity of JyväskyläJyväskyläFinland
  7. 7.School of Environmental SciencesUniversity of GuelphGuelphCanada
  8. 8.University of PotsdamPotsdamGermany

Personalised recommendations