, Volume 746, Issue 1, pp 375–399 | Cite as

Ecology of the invasive New Zealand mud snail, Potamopyrgus antipodarum (Hydrobiidae), in a mediterranean-climate stream system

  • Danuta M. BennettEmail author
  • Tom L. Dudley
  • Scott D. Cooper
  • Samuel S. Sweet


The New Zealand mud snail, Potamopyrgus antipodarum, is a widely distributed non-native species of management concern on four continents. In a southern California stream, P. antipodarum abundance, which ranged from ca. <10 to nearly 150,000 snails m−2, was related to discharge and temperature patterns. Laboratory experiments indicated that P. antipodarum (1) survivorship decreased from 13 to 27°C, but its growth rate was higher at 13 and 20°C than 27°C; (2) grazing rates were similar to those of native algivores in short-term trials; (3) grazing impact was greater than that of a native hydrobiid snail in longer-term trials; (4) ingested different diatom sizes than some other grazers; (5) reduced the abundances of medium-sized and large diatoms, and several filamentous cyanobacteria and chlorophytes, while increasing the relative abundances of tough filamentous chlorophytes (e.g., Cladophora); (6) impact on other grazing invertebrates was species specific, ranging from competition to facilitation; (7) reduced the survivorship of Anaxyrus boreas tadpoles; and (8) was consumed by non-native Procambarus clarkii and naiads of Aeshna and Argia. Ecological effects of introduced P.antipodarum are subtle, occurring primarily at transitory high densities, but flow regulation may enhance their effects by eliminating high flows that reduce their population sizes.


Invasive aquatic species Potamopyrgus antipodarum Mediterranean-climate stream 



We thank Sean Anderson (California State University – Channel Islands), Sabrina Drill (University of California Cooperative Extension) and Curt Lively (University of Indiana, Bloomington) for advice, support, and cooperation during these studies. We gratefully acknowledge the assistance of numerous students at the RIVRlab who assisted in both lab and field adventures: Mara Evans, Alan Wood, Niko Hartline, Kristen Hewett, Vivian Hurtado, Heather Martin (CSUCI), Devyn Orr, Faris Shalan, Cassidy Anton, Beau Tindall, Kellyn Dott, Ryan Hazelton, Samira Spantman, Mariah H. Edmonds, Jordan Senia, and Devin Barry. We also thank Janice Jones from the Marine Sciences Institute for technical assistance in chlorophyll analyses. We extend a special thank you to Sheila Wiseman for creating all the figures that appear in the paper.

Supplementary material

10750_2014_2136_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 12 kb)
10750_2014_2136_MOESM2_ESM.docx (20 kb)
Supplementary material 2 (DOCX 19 kb)


  1. Aberle, N., H. Hillebrand, J. Grey & K. H. Wiltshire, 2005. Selectivity and competitive interactions between two benthic invertebrate grazers (Asellus aquaticus and Potamopyrgus antipodarum): an experimental study using 13C- and 15 N-labelled diatoms. Freshwater Biology 50: 369–379.CrossRefGoogle Scholar
  2. Alonso, A. & P. Castro-Diez, 2008. What explains the invading success of the aquatic mud snail Potamopyrgus antipodarum (Hydrobiidae, Mollusca)? Hydrobiologia 614: 107–116.CrossRefGoogle Scholar
  3. Alonso, A. & P. Castro-Diez, 2012. Tolerance to air exposure of the New Zealand mudsnail Potamopyrgus antipodarum (Hydrobiidae, Mollusca) as a prerequisite to survival in overland translocations. NeoBiota 14: 67–74.CrossRefGoogle Scholar
  4. ANS, 2007. National management and control plan for the New Zealand mudsnail (Potamopyrgus antipodarum). U.S. Federal Aquatic Nuisance Species Task Force.
  5. Arango, C. P., L. A. Riley, J. L. Tank & R. O. Hall, 2009. Herbivory by an invasive snail increases nitrogen fixation in a nitrogen-limited stream. Canadian Journal of Fisheries and Aquatic Science 66: 1309–1317.CrossRefGoogle Scholar
  6. Baltz, D. M. & P. B. Moyle, 1993. Invasion resistance to introduced species by a native assemblage of California stream fishes. Ecological Applications 3: 246–255.CrossRefGoogle Scholar
  7. Bell, M., 1978. Fishes of the Santa Clara River system, Southern California. Natural History Museum of Los Angeles County. Contributions in Science 295: 1–20.Google Scholar
  8. Benson, A. J., 2011. New Zealand mudsnail sightings distribution. U.S. Geological Survey, Nonindigenous Aquatic Species Program.
  9. Bersine, K., V. E. F. Brenneis, R. C. Draheim, A. M. W. Rub, J. E. Zamon, R. K. Litton, S. A. Hinton, M. D. Sytsma, J. R. Cordell & J. W. Chapman, 2008. Distribution of the invasive New Zealand mudsnail (Potamopyrgus antipodarum) in the Columbia River Estuary and its first recorded occurrence in the diet of juvenile Chinook salmon (Oncorhynchus tshawytscha). Biological Invasions 10: 1381–1388.CrossRefGoogle Scholar
  10. Bonada, N. & V. H. Resh, 2013. Mediterranean-climate streams and rivers: geographically separated but ecologically comparable freshwater systems. Hydrobiologia 719: 1–29.Google Scholar
  11. Bowler, P., 1991. The rapid spread of the freshwater hydrobiid snail Potamopyrgus antipodarum (Gray) in the middle Snake River, southern Idaho. Proceedings of the Desert Fish Council 21: 173–182.Google Scholar
  12. Broekhuizen, N., S. Parkyn & D. Miller, 2001. Fine sediment effects on feeding and growth in the invertebrate grazers Potamopyrgus antipodarum (Gastropoda, Hydrobiidae) and Deleatidium sp. (Ephemeroptera, Leptophlebiidae). Hydrobiologia 457: 125–132.CrossRefGoogle Scholar
  13. Broekhuizen, N., S. Parkyn, D. Miller & R. Rose, 2002. The relationship between food density and short term assimilation rates in Potamopyrgus antipodarum and Deleatidium sp. Hydrobiologia 477: 181–188.CrossRefGoogle Scholar
  14. Brenneis, V. E. F., A. Sih & C. E. de Rivera, 2010. Coexistence in the intertidal: interactions between the nonindigenous New Zealand mud snail Potamopyrgus antipodarum and the native estuarine isopod Gnorimosphaeroma insulare. Oikos 119: 1755–1764.CrossRefGoogle Scholar
  15. Brenneis, V. E. F., A. Sih & C. E. de Rivera, 2011. Integration of an invasive consumer into an estuarine food web: direct and indirect effects of the New Zealand mud snail. Oecologia 167: 169–179.PubMedCentralPubMedCrossRefGoogle Scholar
  16. Brown, K. M., B. Lang & K. E. Perez, 2008. The conservation ecology of North American pleurocerid and hydrobiid gastropods. Journal of the North American Benthological Society 27: 484–495.CrossRefGoogle Scholar
  17. Cada, C., 2004. Interactions between the invasive New Zealand mudsnail, Potamopyrgus antipodarum, mayflies, and fish predators. MS thesis. Montana State University, Bozeman.Google Scholar
  18. California Department of Fish and Game, 2005. Controlling the spread of New Zealand mud snails on wading gear. Office of Spill Prevention and Response Administrative Report 2005–02.Google Scholar
  19. Cejka, T., L. Dvorak & V. Kosel, 2008. Present distribution of Potamopyrgus antipodarum (Gray, 1843) (Mollusca: Gastropoda) in the Slovak Republic. Malacologica Bohemoslovaca 7: 21–25.Google Scholar
  20. Cope, N. J. & M. J. Winterbourn, 2004. Competitive interactions between two successful molluscan invaders of freshwaters: an experimental study. Aquatic Ecology 38: 83–91.CrossRefGoogle Scholar
  21. Cox, T. J. & J. C. Rutherford, 2000. Thermal tolerances of two stream invertebrates exposed to diurnally varying temperature. New Zealand Journal of Marine and Freshwater Research 34: 203–208.CrossRefGoogle Scholar
  22. Cross, W. F. & A. C. Benke, 2002. Intra- and interspecific competition among coexisting lotic snails. Oikos 96: 251–264.CrossRefGoogle Scholar
  23. Davis, A. & K. Moeltner, 2010. Valuing the prevention of an infestation: the threat of the New Zealand mud snail in northern Nevada. Agricultural and Resource Economics Review 39: 56–74.Google Scholar
  24. Davidson, A. M., M. Jennisons & A. B. Nicotra, 2011. Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? Ecology Letters 14: 419–431.PubMedCrossRefGoogle Scholar
  25. Dorgelo, J., 1987. Density fluctuations in populations (1982–1986) and biological observations of Potamopyrgus jenkinsi in two trophically differing lakes. Hydrobiological Bulletin 21: 95–110.CrossRefGoogle Scholar
  26. Dorgelo, J. and P. E. G. Leonards. 2001. Relationship between C/N ratio of food types and growth rate in the snail Potamopyrgus jenkinsi (E. A. Smith). Journal of the North American Benthological Society 20: 60–67.Google Scholar
  27. Dudley, W. C., P. L. Blackwelder, L. E. Brand & J. C. Duplessy, 1986a. Stable isotope composition of coccoliths. Marine Micropaleontology 10: 1–8.CrossRefGoogle Scholar
  28. Dudley, T. L., S. D. Cooper & N. Hemphill, 1986b. Effects of macroalgae on a stream invertebrate community. Journal of the North American Benthological Society 5: 93–106.CrossRefGoogle Scholar
  29. Dudley, T. L., C. M. D’Antonio & S. D. Cooper, 1990. Mechanisms and consequences of interspecific competition between competing stream insects. Journal of Animal Ecology 59: 849–866.CrossRefGoogle Scholar
  30. Dudley, T. L., 1992. Beneficial effects of grazing insects on stream algae: consumption vs. epiphyte cleaning. Oikos 65: 121–127.CrossRefGoogle Scholar
  31. Dudley, T. & B. Collins, 1995. Biological invasions in California wetlands: the impacts and control of non-indigenous species in natural areas. Pacific Institute for Studies in Development, Environment and Society, Oakland.Google Scholar
  32. Dukes, J. S. & H. A. Mooney, 1999. Does global change increase the success of biological invaders? Trends in Ecology & Evolution 4: 135–139.CrossRefGoogle Scholar
  33. Dussart, B. H., 1965. Les different categories de plancton. Hydrobiologia 26: 72–74.CrossRefGoogle Scholar
  34. Dybdahl, M. F. & S. L. Kane, 2005. Adaptation versus phenotypic plasticity in the success of a clonal invader. Ecology 86: 1592–1601.CrossRefGoogle Scholar
  35. Dybdahl, M.F., A. Emblidge & D. Drown, 2005. Studies of a trematode parasite for the biological control of an invasive freshwater snail. Report to the Idaho Power Company.Google Scholar
  36. Dzialowski, E. M., 2007. Introduction to the symposium on developmental transitions in respiratory physiology. Comparative Biochemistry and Physiology A 148A: 709–711.CrossRefGoogle Scholar
  37. Evans, M.A., 2012. Impacts of the invasive New Zealand mudsnail (Potamopyrgus antipodarum) as leaf litter decomposers. Dissertation, University of California, Davis, Publication 3544722, 111 p.Google Scholar
  38. Feminella, J. W., M. E. Power & V. H. Resh, 1989. Periphyton responses to invertebrate grazing and riparian canopy in three northern California coastal streams. Freshwater Biology 22: 445–457.CrossRefGoogle Scholar
  39. Gasith, A. & V. Resh, 1999. Streams in Mediterranean climate regions: abiotic influences and biotic responses to predictable seasonal events. Annual Review of Ecology and Systematics 30: 51–81.CrossRefGoogle Scholar
  40. Gerard, C., A. Blanc & K. Costil, 2003. Potamopyrgus antipodarum (Mollusca: Hydrobiidae) in continental aquatic gastropod communities: impact of salinity and trematode parasitism. Hydrobiologia 493: 167–172.CrossRefGoogle Scholar
  41. Hall, R. O., J. L. Tank & M. F. Dybdahl, 2003. Exotic snails dominate nitrogen and carbon cycling in a highly productive stream. Frontiers in Ecology and the Environment 1: 408–411.CrossRefGoogle Scholar
  42. Hall, R. O., M. F. Dybdahl & M. C. Vanderloop, 2006. Extremely high secondary production of introduced snails in rivers. Ecological Applications 16: 1121–1131.PubMedCrossRefGoogle Scholar
  43. Haynes, A., B. J. R. Taylor & M. I. E. Videy, 1985. The influence of the mobility of Potamopyrgus jenkinsi (Prosobranchia: Hydrobiidae) on its spread. Archiv fur Hydrobiologie 103: 497–508.Google Scholar
  44. Hechinger, R. F., 2011. Efficacy & safety of potential biological control agent of the New Zealand mudsnail. In: 6th National New Zealand Mudsnail Conference, University of Idaho, Moscow, March 15–16.Google Scholar
  45. Hechinger, R. F., 2012. Faunal survey and identification key for the trematodes (Platyhelminthes: Digenea) infecting Potamopyrgus antipodarum (Gastropoda: Hydrobiidae) as first intermediate host. Zootaxa 3418: 1–27.Google Scholar
  46. Herbst, D. B., M. T. Bogan & R. Lusardi, 2008. Low specific conductivity limits growth and survival of the New Zealand mud snail from the upper Owens River, California. Western North American Naturalist 68: 324–333.CrossRefGoogle Scholar
  47. Hillebrand, H., C. D. Dürselem, D. B. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 3: 403–424.CrossRefGoogle Scholar
  48. Holomuzki, J. R. & B. J. F. Biggs, 1999. Distributional responses to flow disturbance by a stream-dwelling snail. Oikos 87: 36–47.CrossRefGoogle Scholar
  49. Holomuzki, J. R. & B. J. F. Biggs, 2006. Food limitation affects algivory and grazer performance for New Zealand stream macroinvertebrates. Hydrobiologia 561: 83–94.CrossRefGoogle Scholar
  50. Holomuzki, J. R. & N. Hemphill, 1996. Snail–tadpole interactions in streamside pools. American Midland Naturalist 136: 315–327.CrossRefGoogle Scholar
  51. James, M. R., I. Hawes & M. Weatherhead, 2000. Removal of settled sediments and periphyton from macrophytes by grazing invertebrates in the littoral zone of a large oligotrophic lake. Freshwater Biology 44: 311–326.CrossRefGoogle Scholar
  52. Jokela, J. & C. M. Lively, 1995. Parasites, sex, and early reproduction in a mixed population of freshwater snails. Evolution 49: 1268–1271.CrossRefGoogle Scholar
  53. Kerans, B. L., M. E. Dybdahl, M. M. Gangloff & L. E. Jannot, 2005. Potamopyrgus antipodarum: distribution, density, and effects on native macroinvertebrate assemblages in the Greater Yellowstone ecosystem. Journal of the North American Benthological Society 24: 123–138.CrossRefGoogle Scholar
  54. Kerans, B. L., C. A. Cada & J. Zickovich, 2010. Asymmetrical behavioral interactions between the New Zealand mud snail, Potamopyrgus antipodarum, and scraping, collector-gathering and collector-filtering macroinvertebrates. Journal of Freshwater Ecology 25: 657–666.CrossRefGoogle Scholar
  55. Kociolek, J. P. & E. F. Stoermer, 1993. Freshwater gomphonemoid diatom phylogeny: preliminary results. Hydrobiologia 269(270): 31–38.CrossRefGoogle Scholar
  56. Kolar, C. S. & D. M. Lodge, 2001. Progress in invasion biology: predicting invaders. Trends in Ecology and Evolution 16: 199–204.PubMedCrossRefGoogle Scholar
  57. Kolosovich, A. S., S. Chandra, L. Saito, C. J. Davis & L. Atwell, 2012. Short-term survival and potential grazing effects of the New Zealand mudsnail in an uninvaded Western Great Basin watershed. Aquatic Invasions 7: 203–209.CrossRefGoogle Scholar
  58. Krammer, K. & H. Lange-Bertalot, 1986. Süßwasserflora von Mitteleuropa. Band 2. Bacillariophyceae. Teil 1. Naviculaceae. Gustav Fisher Verlag, Stutttgart. Germany.Google Scholar
  59. Krammer, K. and H. Lange-Bertalot, 1988. Süßwasserflora von Mitteleuropa. Band 2. Bacillariophyceae. Teil 2. Bacillariaceae, Epithemiaceae, Surirellaceae. Gustav Fisher Verlag, Stutttgart. Germany.Google Scholar
  60. Krammer, K. & H. Lange-Bertalot, 1991a. Süßwasserflora von Mitteleuropa. Band 2. Bacillariophyceae. Teil 3. Centrales, Fragilariaceae, Eunotiaceae. Gustav Fisher Verlag, Stutttgart. Germany.Google Scholar
  61. Krammer, K. & H. Lange-Bertalot, 1991b. Süßwasserflora von Mitteleuropa. Band 2. Bacillariophyceae. Teil 4. Achnanthaceae, Kritische Erganzungen zu Navicula (Lineolatae) and Gomphonema. Gustav Fisher Verlag, Stutttgart. Germany.Google Scholar
  62. Krist, A. C. & C. C. Charles, 2012. The invasive New Zealand mudsnail, Potamopyrgus antipodarum, is an effective grazer of algae and altered the assemblage of diatoms more than native grazers. Hydrobiologia 694: 143–151.CrossRefGoogle Scholar
  63. Levri, E. P., R. M. Dermott, S. J. Lunnen, A. A. Kelly & T. Ladson, 2008. The distribution of the invasive New Zealand mud snail (Potamopyrgus antipodarm) in Lake Ontario. Aquatic Ecosystem Health and Management 11: 412–421.CrossRefGoogle Scholar
  64. Li, J. L., S. L. Johnson & J. B. Sobota, 2011. Three responses to small changes in stream temperature by autumn-emerging aquatic insects. Journal of the North American Benthological Society 30: 474–484.CrossRefGoogle Scholar
  65. Liess, A. & M. Kahlert, 2009. Gastropod grazers affect periphyton nutrient stoichiometry by changing benthic algal taxonomy and through differential nutrient uptake. Journal of the North American Benthological Society 28: 283–293.CrossRefGoogle Scholar
  66. Liess, A. & K. Lange, 2011. The snail Potamopyrgus antipodarum grows faster and is more active in the shade, independent of food quality. Oecologia 167: 85–96.PubMedCrossRefGoogle Scholar
  67. McCormick, P. V. & R. J. Stevenson, 1989. Effects of snail grazing on benthic algal community structure in different nutrient environments. Journal of the North American Benthological Society 8: 162–172.CrossRefGoogle Scholar
  68. Meekins, J. F. & B. C. McCarthy, 2001. Effect of environmental variation on the invasive success of a nonindigenous forest herb. Ecological Applications 11: 1336–1347.CrossRefGoogle Scholar
  69. Meffe, G. K., 1984. Effects of abiotic disturbance on coexistence of predator-prey fish species. Ecology 65: 1525–1534.CrossRefGoogle Scholar
  70. Montserrat, M., S. Magalhães, M. W. Sabelis, A. M. de Roos & A. Janssen, 2012. Invasion success in communities with reciprocal intraguild predation depends on the stage structure of the resident population. Oikos 121: 67–76.CrossRefGoogle Scholar
  71. Moffitt, C. M. & C. A. James, 2012. Dynamics of Potamopyrgus antipodarum infestations and seasonal water temperatures in a heavily used recreational watershed in intermountain North America. Aquatic Invasions 7: 192–202.CrossRefGoogle Scholar
  72. Moore, J. W., D. B. Herbst, W. N. Heady & S. M. Carlson, 2012. Stream community and ecosystem responses to the boom and bust of an invading snail. Biological Invasions 14: 2435–2446.CrossRefGoogle Scholar
  73. Murria, C., N. Bonada & N. Prat, 2008. Effects of the invasive species Potamopyrgus antipodarum (Hydrobiidae, Mollusca) on community structure in a small Mediterranean stream. Fundamental and Applied Limnology 171: 131–143.CrossRefGoogle Scholar
  74. Nebeker, A. V., 1971. Effect of temperature at different altitudes on the emergence of aquatic insects from a single stream. Journal of the Kansas Entomological Society 44: 26–35.Google Scholar
  75. Patrick, R. & C.W. Reimer, 1966. The diatoms of the United States, exclusive of Alaska and Hawaii: Fragilariaceae, Eunotiaceae, Achnanthaceae, Naviculaceae. The Academy of Natural Sciences of Philadelphia, Monograph No 13, Lititz, Pennsylvania, USA: 688 pp.Google Scholar
  76. Poff, N., 1996. A hydrogeography of unregulated streams in the United States and an examination of scale-dependence in some hydrological descriptors. Freshwater Biology 36: 71–79.CrossRefGoogle Scholar
  77. Ponder, W. F., 1988. New Zealand Mud Snail, a Molluscan colonizer of Europe and Australia. Journal of Molluscan Studies 54: 271–286.CrossRefGoogle Scholar
  78. Potapova, M. & P. B. Hamilton, 2007. Morphological and ecological variation within the Achnanthidium minutissimum (Bacillariophyceae) species complex. Journal of Phycology 43: 561–575.CrossRefGoogle Scholar
  79. Ribeiro, F., B. Elvira, M. J. Collares-Pereira & P. B. Moyle, 2008. Life-history traits of non-native fishes in Iberian watersheds across several invasion stages: a first approach. Biological Invasions 10: 89–102.CrossRefGoogle Scholar
  80. Ricciardi, A. & H. J. MacIsaac, 2011. Impacts of biological invasions on freshwater ecosystems. In Richardson, D. M. (ed.), Fifty Years of Invasion Ecology: The Legacy of Charles Elton. Wiley-Blackwell, West Sussex: 211–224.Google Scholar
  81. Richards, D., 2004. Competition between the threatened Bliss Rapids snail, Taylorconcha serpenticola (Hershler et al.) and the invasive, aquatic snail, Potamopyrgus antipodarum (Gray). PhD thesis, Montana State University, Bozeman, Montana, USA.Google Scholar
  82. Richards, D. C., 2002. The New Zealand mudsnail invades the western United States. Aquatic Nuisance Species Digest (Gray Freshwater Center, Navarre, MN) 4(4): 42–44.Google Scholar
  83. Richards, D. C., L. D. Cazier & G. T. Lester, 2001. Spatial distribution of three snail species, including the invader Potamopyrgus antipodarum, in a freshwater spring. Western North American Naturalist 61: 375–380.Google Scholar
  84. Richards, D. C., P. O’Connell & D. C. Shinn, 2004. Simple control method to limit the spread of the New Zealand mudsnail Potamopyrgus antipodarum. North American Journal of Fisheries Management 24: 114–117.CrossRefGoogle Scholar
  85. Riley, L., 2002. Interactions between invasive and endemic freshwater snails. In: Potamopyrgus antipodarum in the Western USA: Conference 2002, Minutes of the Second Annual Conference on the New Zealand Mudsnail in the Western USA (August 27 and 28, 2002), Montana State University, Bozeman.Google Scholar
  86. Riley, L. A., M. F. Dybdahl & R. O. Hall, 2008. Invasive species impact: asymmetric interactions between invasive and endemic freshwater snails. Journal of the North American Benthological Society 27: 509–520.CrossRefGoogle Scholar
  87. Sakai, A. K., F. W. Allendorf, J. S. Holt, D. M. Lodge, J. Molofsky, K. A. With, S. Baughman, R. J. Cabin, J. E. Cohen, N. C. Ellstrand, D. E. McCauley, P. O’Neil, I. M. Parker, J. N. Thompson & S. G. Weller, 2001. The population biology of invasive species. Annual Review of Ecology and Systematics 32: 305–332.CrossRefGoogle Scholar
  88. Smith, G. R., A. A. Burgett & J. E. Rettig, 2012. Effects of the anuran tadpole assemblage and nutrient enrichment on freshwater snail abundance (Physella sp.). American Midland Naturalist 168: 341–351.CrossRefGoogle Scholar
  89. Schmidlin, S., D. Schmera & B. Baur, 2012. Alien molluscs affect the composition and diversity of native macroinvertebrates in a sandy flat of Lake Neuchâtel, Switzerland. Hydrobiologia 679: 233–249.CrossRefGoogle Scholar
  90. Schreiber, E. S. G., A. Glaister, G. P. Quinn & P. S. Lake, 1998. Life history and population dynamics of the exotic New Zealand mudsnail (Prosobranchia: Hydrobiidae) in Lake Purrumbete, Victoria, Australia. Australian Journal of Marine and Freshwater Research 49: 73–78.CrossRefGoogle Scholar
  91. Schreiber, E. S. G., P. S. Lake & G. P. Quinn, 2002. Facilitation of native stream fauna by an invading species? Experimental investigation of the interaction of the snail, Potamopyrgus antipodarum (Hydrobiidae) with native benthic fauna. Biological Invasions 4: 317–325.CrossRefGoogle Scholar
  92. Schreiber, E. S. G., G. P. Quinn & P. S. Lake, 2003. Distribution of an alien aquatic snail in relation to flow variability, human activities and water quality. Freshwater Biology 48: 951–961.CrossRefGoogle Scholar
  93. Simberloff, D. & L. Gibbons, 2004. Now you see them, now you don’t! Population crashes of established introduced species. Biological Invasions 6: 161–172.CrossRefGoogle Scholar
  94. Sepulveda, A. J. & L. B. Marczak, 2011. Active dispersal of an aquatic invader determined by resource and flow conditions. Biological Invasions 14: 1201–1209.CrossRefGoogle Scholar
  95. Strayer, D. L. & H. M. Malcolm, 2006. Long-term demography of a zebra mussel (Dreissena polymorpha) population. Freshwater Biology 51: 117–130.CrossRefGoogle Scholar
  96. Suren, A. M., 2005. Effects of deposited sediment on patch selection by two grazing stream invertebrates. Hydrobiologia 549: 205–218.CrossRefGoogle Scholar
  97. Sweet, S. S. & B. K. Sullivan, 2005. Bufo californicus. In Lannoo, M. J. (ed.), Amphibian Declines: The Conservation Status of U.S. Species. University of California Press, Berkeley: 396–400.Google Scholar
  98. Swift, C. C., T. R. Haglund, M. Ruiz & R. N. Fisher, 1993. The status and distribution of the freshwater fishes of southern California. Bulletin of the Southern California Academy of Sciences 92: 101–167.Google Scholar
  99. Twardochleb, L. A., M. Novak & J. S. Moore, 2012. Using the functional response of a consumer to predict biotic resistance to invasive prey. Ecological Applications 22: 1162–1171.PubMedCrossRefGoogle Scholar
  100. Vila-Gispert, A., C. Alcaraz & E. García-Berthou, 2005. Life-history traits of invasive fish in small Mediterranean streams. Biological Invasions 7: 107–116.CrossRefGoogle Scholar
  101. Vilà, M., J. L. Espinar, M. Hejda, P. E. Hulme, V. Jarošík, J. L. Maron, J. Pergl, U. Schaffner, Y. Sun & P. Pyšek, 2011. Ecological impacts of invasive alien plants: a meta analysis of their effects on species, communities and ecosystems. Ecology Letters 14: 702–708.Google Scholar
  102. Vinson, M. R. & M. A. Baker, 2008. Poor growth of rainbow trout fed New Zealand mudsnails Potamopyrgus antipodarum. North American Journal of Fisheries Management 28: 701–709.CrossRefGoogle Scholar
  103. Vitousek, P. M., J. D. Aber, R. W. Howarth, G. E. Likens, P. A. Matson, D. W. Schindler, W. H. Schlesinger & D. Tilman, 1997. Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications 7: 737–750.Google Scholar
  104. Warton, D. I. & K. C. Hui, 2011. The arcsine is asinine: the analysis of proportions in ecology. Ecology 92: 3–10.PubMedCrossRefGoogle Scholar
  105. Winterbourn, M., 1970. Population studies on the New Zealand freshwater gastropod, Potamopyrgus antipodarum (Gray). Proceedings of the Malacological Society of London 39: 139–149.Google Scholar
  106. Welch, E. B., E. L. Anderson, J. M. Jacoby, B. J. F. Biggs & J. M. Quinn, 2000. Invertebrate grazing of filamentous green algae in outdoor channels. Verhandlungen der Internationale Vereinigung für theoretische und angewandte Limnologie 27: 2408–2414.Google Scholar
  107. Zaranko, D. T., D. G. Farara & F. G. Thompson, 1997. Another exotic mollusk in the Laurentian Great Lakes: the New Zealand native Potamopyrgus antipodarum (Gray 1843) (Gastropoda, Hydrobiidae). Canadian Journal of Fisheries and Aquatic Sciences 54: 809–814.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Danuta M. Bennett
    • 1
    Email author
  • Tom L. Dudley
    • 1
  • Scott D. Cooper
    • 2
  • Samuel S. Sweet
    • 2
  1. 1.Marine Science InstituteUniversity of CaliforniaSanta BarbaraUSA
  2. 2.Department of Ecology, Evolution, and Marine BiologyUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations