Hydrobiologia

, Volume 747, Issue 1, pp 159–176 | Cite as

Development and evaluation of species distribution models for fourteen native central U.S. fish species

  • Kristen L. Bouska
  • Gregory W. Whitledge
  • Christopher Lant
Primary Research Paper

Abstract

Environmental change has and will continue to adversely influence aquatic communities. Efforts to model impacts of environmental change on fisheries have largely focused on cold water, commercial, and recreationally valued species, even though warm water, non-game species have important roles in ecosystem services and processes. We developed species distribution models for fourteen warm water fish species native to the central United States and evaluated environmental drivers and predictive performance. We used an ensemble model approach produced by combining forecasts of five single-model techniques. Response plots and variable importance calculations were used to evaluate the influence of individual variables. The predictive performance of the ensemble models was assessed using area under the curve of the receiver operating characteristic plot (AUC). AUC values indicate ensemble models performed better than single-model types, suggesting ensemble models are more reliable and applicable for management purposes than single models. Most models were influenced by a mix of climate, land use, and geophysical variables; however, climate variables were the dominant environmental drivers across models. Given the high sensitivity of models to climate and land use, we expect future climate and land use changes to influence distributions.

Keywords

Ensemble model Fish distributions Model performance Warm water fishes Range projections 

References

  1. Aguirre-Gutierrez, J., L. G. Carvalheiro, C. Polce, E. E. van Loon, N. Raes, M. Reemer & J. C. Biesmeijer, 2013. Fit-for-purpose: species distribution model performance depends on evaluation criteria—Dutch Hoverflies as a case study. PLoS One 8: e63708.PubMedCentralPubMedCrossRefGoogle Scholar
  2. Allan, J. D., 2004. Landscapes and riverscapes: the influence of land use on stream ecosystems. Annual Review of Ecology, Evolution, and Systematics 35: 257–284.CrossRefGoogle Scholar
  3. Allouche, O., A. Tsoar & R. Kadmon, 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic. Journal of Applied Ecology 43: 1223–1232.CrossRefGoogle Scholar
  4. Araujo, M. B. & M. New, 2006. Ensemble forecasting of species distributions. Trends in Ecology and Evolution 22: 42–47.PubMedCrossRefGoogle Scholar
  5. Araujo, M. B. & A. Guisan, 2006. Five (or so) challenges for species distribution modelling. Journal of Biogeography 33: 1677–1688.CrossRefGoogle Scholar
  6. Araujo, M. B. & M. Luoto, 2007. The importance of biotic interactions for modelling species distributions under climate change. Global Ecology and Biogeography 16: 743–753.CrossRefGoogle Scholar
  7. Austin, M., 2007. Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecological Modelling 200: 1–19.CrossRefGoogle Scholar
  8. Austin, M. P., 1985. Continuum concept, ordination methods and niche theory. Annual Review of Ecology, Evolution and Systematics 16: 39–61.CrossRefGoogle Scholar
  9. Austin, M. P., 2002. Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecological Modelling 157: 101–118.CrossRefGoogle Scholar
  10. Babet-Massin, M., W. Thuiller & F. Jiguet, 2010. How much do we overestimate future local extinction rates when restricting the range of occurrence data in climate suitability models? Ecography 33: 878–886.CrossRefGoogle Scholar
  11. Bellard, C., C. Bertelsmeier, P. Leadley, W. Thuiller & F. Courchamp, 2012. Impacts of climate change on the future of biodiversity. Ecology Letters 15: 365–377.CrossRefGoogle Scholar
  12. Bond, N., J. Thomson, P. Reich & J. Stein, 2011. Using species distribution models to infer potential climate change-induced range shifts of freshwater fish in south-eastern Australia. Marine and Freshwater Research 62: 1043–1061.CrossRefGoogle Scholar
  13. Boulangeat, I., D. Gravel & W. Thuiller, 2012. Accounting for dispersal and biotic interactions to disentangle the drivers of species distributions and their abundances. Ecology Letters 15: 584–593.PubMedCentralPubMedCrossRefGoogle Scholar
  14. Bouska, K. & G. Whitledge, 2014. Habitat associations of fish assemblages in the Cache River, Illinois. Environmental Biology of Fishes 97: 27–42.CrossRefGoogle Scholar
  15. Bovee, K. D., Newcomb, T. J. & Coon, T.G. (1994) Relations between habitat variability and population dynamics of bass in the Huron River, Michigan. Biological Report 21. U.S. Geological Survey, Washington, DC: 63 pp.Google Scholar
  16. Brewer, S. K., C. F. Rabeni, S. P. Sowa & G. Annis, 2007. Natural landscape and stream segment attributes influencing the distribution and relative abundance of riverine smallmouth bass in Missouri. North American Journal of Fisheries Management 27: 326–341.CrossRefGoogle Scholar
  17. Brosse, S. & S. Lek, 2000. Modelling roach (Rutilus rutilus) microhabitat using linear and nonlinear techniques. Freshwater Biology 44: 441–452.CrossRefGoogle Scholar
  18. Buisson, L. & G. Grenouillet, 2009. Contrasted impacts of climate change on stream fish assemblages along an environmental gradient. Diversity and Distributions 15: 613–626.CrossRefGoogle Scholar
  19. Buisson, L., W. Thuiller, S. Lek, P. Lim & G. Grenouillet, 2008. Climate change hastens the turnover of stream fish assemblages. Global Change Biology 14: 2232–2248.CrossRefGoogle Scholar
  20. Buisson, L., W. Thuiller, N. Casajus, S. Lek & G. Grenouillet, 2010. Uncertainty in ensemble forecasting of species distribution. Global Change Biology 16: 1145–1157.CrossRefGoogle Scholar
  21. Cianfrani, C., G. Le Lay, L. Maiorano, H. F. Satizabal & A. Loy, 2011. Adapting global conservation strategies to climate change at the European scale: the otter as a flagship species. Biological Conservation 144: 2068–2080.CrossRefGoogle Scholar
  22. Cleary, R. E., 1956. Observations on factors affecting smallmouth bass production in Iowa. The Journal of Wildlife Management 20: 353–359.CrossRefGoogle Scholar
  23. Comte, L., L. Buisson, M. Daufresne & G. Grenouillet, 2013. Climate-induced changes in the distribution of freshwater fish: observed and predicted trends. Freshwater Biology 58: 625–639.CrossRefGoogle Scholar
  24. Coutant, C. C., 1977. Compilation of temperature preference data. Journal of the Fisheries Research Board of Canada 34: 739–745.CrossRefGoogle Scholar
  25. Crimmins, S. M., S. Z. Dobrowski & A. R. Mynsberge, 2013. Evaluating ensemble forecasts of plant species distributions under climate change. Ecological Modelling 266: 126–130.CrossRefGoogle Scholar
  26. Dawson, T. P., S. T. Jackson, J. I. House, I. C. Prentice & G. M. Mace, 2011. Beyond predictions: biodiversity conservation in a changing climate. Science 332: 53–58.PubMedCrossRefGoogle Scholar
  27. Diniz-Filho, J. A. F., L. M. Bini, T. F. Rangel, R. D. Loyola, C. Hof, D. Nogues-Bravo & M. B. Araujo, 2009. Partitioning and mapping uncertainties in ensembles of forecasts of species turnover of climate change. Ecography 32: 897–906.CrossRefGoogle Scholar
  28. Dodds, W. K., K. Gido, M. R. Whiles, K. M. Fritz & W. J. Matthews, 2004. Life on the edge: the ecology of great plains prairie streams. BioScience 54: 205–216.CrossRefGoogle Scholar
  29. Dudgeon, D., A. H. Arthington, M. O. Gessner, Z. Kawabata, D. J. Knowler, C. Leveque, R. J. Naiman, A. Prieur-Richard, D. Soto, M. L. J. Stiassny & C. A. Sullivan, 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81: 163–182.PubMedCrossRefGoogle Scholar
  30. Eaton, J. G. & R. M. Scheller, 1996. Effects of climate warming on fish thermal habitat in streams of the United States. Limnology and Oceanography 41: 1109–1115.CrossRefGoogle Scholar
  31. Elith, J. & J. R. Leathwick, 2009. Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution and Systematics 40: 677–697.CrossRefGoogle Scholar
  32. Elith, J., C. H. Graham, R. P. Anderson, M. Dudik, S. Ferrier, A. Guisan, R. J. Hijmans, F. Huettmann, J. R. Leathwick, A. Lehmann, J. Li, L. G. Lohmann, B. A. Loiselle, G. Manion, C. Moritz, M. Nakamura, Y. Nakazawa, J. Overton, A. Townsend Peterson, S. J. Phillips, K. Richardson, R. Scachetti-Pereira, R. E. Schapire, J. Soberon, S. Williams, M. S. Wisz & N. E. Zimmerman, 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129–151.CrossRefGoogle Scholar
  33. Esselman, P. C., D. M. Infante, L. Wang, A. Cooper & W. W. Taylor, 2011. An initial assessment of integrated landscape disturbance on river fish habitats in the conterminous United States. Restoration Ecology 23: 133–151.CrossRefGoogle Scholar
  34. Fielding, A. H. & J. F. Bell, 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24: 38–49.CrossRefGoogle Scholar
  35. Fischer, J. R. & C. P. Paukert, 2008a. Historical and current environmental influences on an endemic Great Plains fish. American Midland Naturalist 159: 364–377.CrossRefGoogle Scholar
  36. Fischer, J. R. & C. P. Paukert, 2008b. Habitat relationships with fish assemblages in minimally disturbed Great Plains regions. Ecology of Freshwater Fish 17: 597–609.CrossRefGoogle Scholar
  37. Franklin, J., 2009. Mapping Species Distribution: Spatial Inference and Prediction. Cambridge University Press, Cambridge.Google Scholar
  38. Franklin, J., K. E. Wejnert, S. A. Hathaway, C. J. Rochester & R. N. Fisher, 2009. Effect of species rarity on the accuracy of species distribution models for reptiles and amphibians in southern California. Diversity and Distributions 15: 167–177.CrossRefGoogle Scholar
  39. Grenouillet, G., L. Buisson, N. Casajus & S. Lek, 2011. Ensemble modelling of species distribution: the effects of geographical and environmental ranges. Ecography 34: 9–17.CrossRefGoogle Scholar
  40. Guisan, A. & W. Thuiller, 2005. Predicting species distribution: offering more than simple habitat models. Ecology Letters 8: 993–1009.CrossRefGoogle Scholar
  41. Guisan, A. & N. E. Zimmerman, 2000. Predictive habitat distribution models in ecology. Ecological Modelling 135: 147–186.CrossRefGoogle Scholar
  42. Guisan, A., C. H. Graham, J. Elith, F. Huettmann & Group, N.S.D.M, 2007. Sensitivity of predictive species distribution models to change in grain size. Diversity and Distributions 13: 332–340.CrossRefGoogle Scholar
  43. Heimann, D.C., Licher, S.S. & Schalk, G.K. (2007) Effects of impoundments and land-cover changes on streamflows and selected fish habitat in the Upper Osage River Basin, Missouri and Kansas. Scientific Investigations Report 2007–5175. U.S. Geological Survey: 96 pp.Google Scholar
  44. Heino, J., R. Virkkala & H. Toivonen, 2009. Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biological Reviews 84: 39–54.PubMedCrossRefGoogle Scholar
  45. Hernandez, P. A., C. H. Graham, L. L. Master & D. L. Albert, 2006. The effect of sample size and species characteristics on performance of different species distribution models. Ecography 29: 773–785.CrossRefGoogle Scholar
  46. Hokanson, K. E. F., 1977. Temperature requirements of some percids and adaptations to the seasonal temperature cycle. Journal of the Fisheries Board of Canada 34: 1524–1550.CrossRefGoogle Scholar
  47. Huntley, B., R. E. Green, T. C. Collingham, J. K. Hill, S. G. Willis, P. J. Bartlein, W. Cramer & W. J. M. Hagemeijer, 2004. The performance of models relating species geographical distributions to climate is independent of trophic level. Ecological Letters 7: 417–426.CrossRefGoogle Scholar
  48. Jackson, D. A., P. R. Peres-Neto & J. D. Olden, 2001. What controls who is where in freshwater fish communities—the role of biotic, abiotic, and spatial factors. Canadian Journal of Fisheries and Aquatic Science 58: 157–170.Google Scholar
  49. Kadmon, R., O. Farber & A. Danin, 2003. A systematic analysis of factors affecting the performance of climatic envelope models. Ecological Applications 13: 853–867.CrossRefGoogle Scholar
  50. Kearney, M. & W. Porter, 2009. Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecology Letters 12: 334–350.PubMedCrossRefGoogle Scholar
  51. Kostyack, J., J. J. Lawler, J. D. Olden & J. M. Scott, 2011. Beyond reserves and corridors: policy solutions to facilitate the movement of plants and animals in a changing climate. BioScience 61: 713–719.CrossRefGoogle Scholar
  52. Lassalle, G., M. Beguer, L. Beaulaton & E. Rochard, 2008. Diadromous fish conservation plans need to consider global warming issues: an approach using biogeographical models. Biological Conservation 141: 1105–1118.CrossRefGoogle Scholar
  53. Labay, B., A. E. Cohen, B. Sissel, D. A. Hendrickson, F. D. Martin & S. Sarkar, 2011. Assessing historical fish community composition using surveys, historical collection data, and species distribution models. PLoS One 6: e25145.PubMedCentralPubMedCrossRefGoogle Scholar
  54. Lavergne, S., N. Mouquet, W. Thuiller & O. Ronce, 2010. Biodiversity and climate change: integrating evolutionary and ecological responses of species and communities. Annual Review of Ecology, Evolution and Systematics 41: 321–350.CrossRefGoogle Scholar
  55. Lawler, J. J. & J. D. Olden, 2011. Reframing the debate over managed relocation. Frontiers in Ecology and the Environment 9: 569–574.CrossRefGoogle Scholar
  56. Leathwick, J. R., J. Elith & T. Hastie, 2006. Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distributions. Ecological Modelling 199: 188–196.CrossRefGoogle Scholar
  57. Leathwick, J. R., D. Rowe, J. Richardson, J. Elith & T. Hastie, 2005. Using multivariate adaptive regression splines to predict the distributions of New Zealand’s freshwater diadromous fish. Freshwater Biology 50: 2034–2052.CrossRefGoogle Scholar
  58. Leathwick, J. R., J. Elith, W. L. Chadderton, D. Rowe & T. Hastie, 2008. Dispersal, disturbance and the contrasting biogeographies of New Zealand’s diadromous and non-diadromous fish species. Journal of Biogeography 35: 1481–1497.CrossRefGoogle Scholar
  59. Leopold, L., 1994. The View of the River. Harvard University Press, Cambridge, MA.Google Scholar
  60. Lyons, J., J. S. Stewart & M. Mitro, 2010. Predicted effects of climate warming on the distribution of 50 stream fishes in Wisconsin, USA. Journal of Fish Biology 77: 1867–1898.PubMedCrossRefGoogle Scholar
  61. Maloney, K. O., D. E. Weller, D. E. Michaelson & P. J. Ciccotto, 2013. Species distribution models of freshwater stream fishes in Maryland and their implications for management. Environmental Modeling & Assessment 18: 1–12.CrossRefGoogle Scholar
  62. Manel, S., H. C. Williams & S. J. Omerod, 2001. Evaluating presence-absence models in ecology: the need to account for prevalence. Journal of Applied Ecology 38: 921–931.CrossRefGoogle Scholar
  63. Marmion, M., M. Parvianinen, M. Luoto, R. K. Heikkinen & W. Thuiller, 2009. Evaluation of consensus methods in predictive species distribution modelling. Diversity and Distributions 15: 59–69.CrossRefGoogle Scholar
  64. Mawdsley, J. R., R. O’Malley & D. S. Ojima, 2009. A review of climate-change adaptation strategies for wildlife management and biodiversity conservation. Conservation Biology 23: 1080–1089.PubMedCrossRefGoogle Scholar
  65. McPherson, J. M. & W. Jetz, 2007. Effects of species’ ecology on the accuracy of distribution models. Ecography 30: 135–151.Google Scholar
  66. McPherson, J. M., W. Jetz & D. J. Rogers, 2004. The effects of species’ range sizes on the accuracy of distribution models: ecological phenomenon or statistical artefact? Journal of Applied Ecology 41: 811–823.CrossRefGoogle Scholar
  67. Mitchell, M. S., R. A. Lancia & J. A. Gerwin, 2001. Using landscape-level data to predict the distribution of birds on a managed forest: effects of scale. Ecological Applications 11: 1692–1708.CrossRefGoogle Scholar
  68. Morin, A. & W. Thuiller, 2009. Comparing niche- and process-based models to reduce prediction uncertainty in species range shifts under climate change. Ecology 90: 1301–1313.PubMedCrossRefGoogle Scholar
  69. NatureServe, 2010. Digital Distribution Maps of the Freshwater Fishes in the Conterminous United States, Version 3.0. Natureserve, Arlington, VA.Google Scholar
  70. Olden, J. D., M. K. Kennard, J. J. Lawler & N. L. Poff, 2011. Challenges and opportunities in implementing managed relocation for conservation of freshwater species. Conservation Biology 25: 40–47.PubMedCrossRefGoogle Scholar
  71. Ostrand, K. G. & G. R. Wilde, 2001. Temperature, dissolved oxygen, and salinity tolerances of five prairie stream fishes and their role in explaining fish assemblage patterns. Transactions of the American Fisheries Society 130: 742–749.CrossRefGoogle Scholar
  72. Pasbrig, C. A., K. D. Koupal, S. Schainost & W. W. Hoback, 2012. Changes in range-wide distribution of plains topminnow Fundulus sciadicus. Endangered Species Research 16: 235–247.CrossRefGoogle Scholar
  73. Pearce, J. & S. Ferrier, 2000. Evaluating the predictive performance of habitat models developed using logistic regression. Ecological Modelling 133: 225–245.CrossRefGoogle Scholar
  74. Pearce, J., S. Ferrier & D. Scotts, 2001. An evaluation of the predictive performance of distributional models for flora and fauna in north-east New South wales. Journal of Environmental Management 62: 171–184.PubMedCrossRefGoogle Scholar
  75. Pearson, R. G., W. Thuiller, M. B. Araujo, E. Martinez-Meyer, L. Brotons, C. McClean, L. Miles, P. Segurado, T. P. Dawson & D. C. Lees, 2006. Model-based uncertainty in species range prediction. Journal of Biogeography 33: 1704–1711.CrossRefGoogle Scholar
  76. Perkin, J. S. & K. B. Gido, 2011. Stream fragmentation thresholds for a reproductive guild of Great Plains fishes. Fisheries 26: 371–383.CrossRefGoogle Scholar
  77. Peterson, J. T. & T. J. Kwak, 1999. Modeling the effects of land use and climate change on riverine smallmouth bass. Ecological Applications 9: 1391–1404.CrossRefGoogle Scholar
  78. Poff, N. L. & J. D. Allan, 1995. Functional organization of stream fish assemblages in relation to hyrological variability. Ecology 76: 606–627.CrossRefGoogle Scholar
  79. Poulos, H. M., B. Chernoff, P. L. Fuller & D. Butman, 2012. Ensemble forecasting of potential habitat for three invasive fishes. Aquatic Invasions 7: 59–72.CrossRefGoogle Scholar
  80. Quist, M. C., W. A. Hubert & F. J. Rahel, 2005. Fish assemblage structure following impoundment of a Great Plains river. Western North American Naturalist 65: 53–63.Google Scholar
  81. Rapacciuolo, G., D. B. Roy, S. Gillings, R. Fox, K. Walker & A. Purvis, 2012. Climatic associations of British species distributions show good transferability in time but low predictive accuracy for range change. PLoS One 7: e40212.PubMedCentralPubMedCrossRefGoogle Scholar
  82. Segurado, P. & M. B. Araujo, 2004. An evaluation of methods for modelling species distributions. Journal of Biogeography 31: 1555–1568.CrossRefGoogle Scholar
  83. Sharma, S., M. J. Vander Zanden, J. J. Magnuson & J. Lyons, 2011. Comparing climate change and species invasions as drivers of coldwater fish population extirpations. PLoS One 6: e22906.PubMedCentralPubMedCrossRefGoogle Scholar
  84. Simonson, T. D. & W. A. Swenson, 1990. Critical stream velocities for young-of-year smallmouth bass in relation to habitat use. Transactions of the American Fisheries Society 119: 902–909.CrossRefGoogle Scholar
  85. Smale, M. A. & C. F. Rabeni, 1995. Hypoxia and hyperthermia tolerances of headwater stream fishes. Transactions of the American Fisheries Society 124: 698–710.CrossRefGoogle Scholar
  86. Smith, A. B., M. J. Santos, M. S. Koo, K. M. C. Rowe, K. C. Rowe, J. L. Patton, J. D. Perrine, S. R. Beissinger & C. Moritz, 2013. Evaluation of species distribution models by resampling of sites surveyed a century ago by Joseph Grinnell. Ecography 36: 1017–1031.CrossRefGoogle Scholar
  87. Smith, S. M., J. S. Odenkirk & S. J. Reeser, 1995. Smallmouth bass recruitment variability and its relation to stream discharge in three Virginia rivers. North American Journal of Fisheries Management 25: 1112–1121.CrossRefGoogle Scholar
  88. Steen, P. J., M. J. Wiley & J. S. Schaeffer, 2010. Predicting future changes in Muskegon river watershed game fish distributions under future land cover alteration and climate change scenarios. Transactions of the American Fisheries Society 139: 396–412.CrossRefGoogle Scholar
  89. Stefan, H. G. & E. B. Preud’homme, 1993. Stream temperature estimation from air temperature. Journal of the American Water Resources Association 29: 27–45.CrossRefGoogle Scholar
  90. Syphard, A. D. & J. Franklin, 2010. Species traits affect the performance of species distribution models for plants in southern California. Journal of Vegetation Science 21: 177–189.CrossRefGoogle Scholar
  91. Thuiller, W., 2007. Climate change and the ecologist. Nature 448: 550–552.PubMedCrossRefGoogle Scholar
  92. Thuiller, W., B. Lafourcade, R. Engler & M. B. Araujo, 2009. BIOMOD—A platform for ensemble forecasting of species distributions. Ecography 32: 369–373.CrossRefGoogle Scholar
  93. Tobin, B.D. & D.J. Weary, 2004 Digital engineering aspects of karst map: a GIS version of Davies, W.E., Simpson, J.H., Ohlmacher, G.C., Kirk, W.S., and Newton, E.G., 1984, Enginering aspects of karstL U.S. Geological Survey, National Atlas of the United States of America, Scale 1:7,500,000. Available at: http://pubs.usgs.gov/of/2004/1352/. Accessed 2012.
  94. Townsend Peterson, A., 2006. Uses and requirements of ecological niche models and relation distributional models. Biodiversity Informatics 3: 59–72.Google Scholar
  95. U.S. Geological Survey 2013 Biodiversity Information Serving Our Nation (BISON). Available at: (accessed 2014).Google Scholar
  96. Van der Putten, W. H., M. Macel & M. E. Visser, 2010. Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Philosophical Transactions of the Royal Society B: Biological Sciences 365: 2025–2034.CrossRefGoogle Scholar
  97. Vanni, M., 2002. Nutrient cycling by animals in freshwater ecosystems. Annual Review of Ecology, Evolution and Systematics 33: 341–370.CrossRefGoogle Scholar
  98. Wang, L., J. Lyons, P. Kanehl & R. Gatti, 1997. Influences of watershed land use on habitat quality and biotic integrity in Wisconsin streams. Fisheries 22: 6–12.CrossRefGoogle Scholar
  99. Wenger, S. J. & J. D. Olden, 2012. Assessing transferability of ecological models: an underappreciated aspect of statistical validation. Methods in Ecology and Evolution 3: 260–267.CrossRefGoogle Scholar
  100. Wenger, S. J., D. J. Isaak, C. H. Luce, H. M. Neville, K. D. Fausch, J. B. Dunham, D. C. Dauwalter, M. K. Young, M. M. Elsner, B. E. Rieman, A. F. Hamlet & J. E. Williams, 2011. Flow regime, temperature, and biotic interactions drive differential declines of trout species under climate change. Proceedings of the National Academy of Sciences of the United States of America 108: 14175–14180.PubMedCentralPubMedCrossRefGoogle Scholar
  101. Wisz, M. S., R. J. Hijmans, J. Li, A. T. Peterson, C. H. Graham, A. Guisan & Group, N.P.S.D.W, 2008. Effects of sample size on the performance of species distribution models. Diversity and Distributions 14: 763–773.CrossRefGoogle Scholar
  102. Zorn, T. G., P. W. Seelbach & M. J. Wiley, 2002. Distributions of stream fishes and their relationship to stream size and hydrology in Michigan’s Lower Peninsula. Transactions of the American Fisheries Society 131: 70–85.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Kristen L. Bouska
    • 1
  • Gregory W. Whitledge
    • 2
  • Christopher Lant
    • 3
  1. 1.Department of Fisheries and Wildlife SciencesUniversity of MissouriColumbiaUSA
  2. 2.Center for Fisheries, Aquaculture and Aquatic Sciences and Department of ZoologySouthern Illinois UniversityCarbondaleUSA
  3. 3.Department of Environment and Society, Quinney College of Natural ResourcesUtah State UniversityLoganUSA

Personalised recommendations