Skip to main content
Log in

Physical habitat and water quality correlates of crayfish distributions in a mined watershed

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In mined watersheds, water quality alters aquatic faunas, but few studies have focused on associations between stream habitat and crayfish distributions. We examined associations of water quality and physical habitat quality on presence/absence of six crayfish species in the upper Kanawha River drainage of southern West Virginia, USA, a region with a long history of surface and mountaintop removal mining of coal. Data supported an association of physical habitat quality with the presence of four species (Cambarus carinirostris, Cambarus robustus, Cambarus cf. sciotensis, and Orconectes sanbornii). Cambarus bartonii cavatus and the non-native Orconectes virilis were associated with lower quality physical habitat than that of the other four species. Relative to other species, C. b. cavatus was associated with the lowest conductivity values, whereas O. virilis was associated with the highest conductivity values. Secondary and tertiary burrowers were generally associated with relatively high-quality physical habitat. However, C. b. cavatus, a crayfish known to burrow extensively in headwater streams, was associated with the lowest quality physical habitat. Physical habitat quality was generally supported over stream conductivity as a variable influencing crayfish distributions. Our data demonstrate the importance of stream habitat quality when assessing crayfish assemblages within mined watersheds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Burnham, K. P. & D. R. Anderson, 2002. Model selection and multi-model inference: a practical information-theoretic approach, 2nd ed. Springer, New York.

  • Burskey, J. L. & T. P. Simon, 2010. Reach- and watershed-scale associations of crayfish within an area of varying agricultural impact in west-central Indiana. Southeastern Naturalist 9(Special Issue 3): 199–216.

    Article  Google Scholar 

  • Clark, J. M., M. W. Kershner & J. J. Montemarano, 2013. Habitat-specific effects of particle size, current velocity, water depth, and predation risk on size-dependent crayfish distribution. Hydrobiologia 716: 103–114.

    Article  CAS  Google Scholar 

  • Cormier, S. M., G. W. Suter II & L. Zheng, 2013a. Derivation of a benchmark for freshwater ionic strength. Environmental Toxicology and Chemistry 32: 263–271.

    Article  CAS  PubMed  Google Scholar 

  • Cormier, S., S. Wilkes & L. Zheng, 2013b. Relationship of land use and elevated ionic strength in Appalachian watersheds. Environmental Toxicology and Chemistry 32: 296–303.

    Article  CAS  PubMed  Google Scholar 

  • Cormier, S. M., G. W. Suter II, G. J. Pond & L. Zheng, 2013c. Assessing causation of the extirpation of stream macroinvertebrates by a mixture of ions. Environmental Toxicology and Chemistry 32: 277–287.

    Article  CAS  PubMed  Google Scholar 

  • England, L. E. & A. D. Rosemond, 2004. Small linkages in forest cover weaken terrestrial-aquatic linkages in headwater streams. Freshwater biology 49: 721–734.

    Article  Google Scholar 

  • Flinders, C. A. & D. D. Magoulick, 2007. Effects of depth and crayfish size on predation risk and foraging profitability of a lotic crayfish. Journal of the North American Benthological Society 26: 767–778.

    Article  Google Scholar 

  • Galloway, M. S. & W. D. Hummel, 1991. Adaptation of Cambarus bartonii cavatus (Hay) (Decapoda: Cambaridae) to acid mine-polluted waters. Ohio Journal of Science 91: 167–171.

    Google Scholar 

  • Gazendam, E., B. Gharabaghi, F. C. Jones & H. Whiteley, 2011. Evaluation of the Qualitative Habitat Evaluation Index as a planning and design tool for restoration of rural Ontario waterways. Canadian Water Resources Journal 36: 149–158.

    Article  Google Scholar 

  • Hartman, K. J., M. D. Kaller, J. W. Howell & J. A. Sweka, 2005. How much do valley fills influence headwater streams? Hydrobiologia 532: 91–102.

    Article  CAS  Google Scholar 

  • Hobbs, H. H. Jr., 1981. The crayfishes of Georgia. Smithsonian Contributions to Zoology 318: 1–549.

    Article  Google Scholar 

  • Hosmer, D. W. & S. Lemeshow, 2000. Applied Logistic Regression Analysis, 2nd ed. Wiley, New York.

    Book  Google Scholar 

  • Hopkins II, R. L., B. M. Altier, D. Haselman, A. D. Merry & J. J. White, 2013. Exploring the legacy effects of surface coal mining on stream chemistry. Hydrobiologia 713: 87–95.

    Article  CAS  Google Scholar 

  • Jezerinac, R. F., G. W. Stocker & D. C. Tarter, 1995. The crayfish (Decapoda: Cambaridae) of West Virginia. Bulletin of the Ohio Biological Survey, New Series 10: 1–193.

    Google Scholar 

  • Lindberg, T., E. Bernhardt, R. Bier, A. Helton, R. Merola, A. Vengosh & R. Di Giulio, 2011. Cumulative impacts of mountaintop mining on an Appalachian watershed. Proceedings of the National Academy of Science 108: 20929–20934.

    Article  CAS  Google Scholar 

  • Lodge, D. M. & A. M. Hill, 1994. Factors governing species composition, population size, and productivity of cool-water crayfish. Nordic Journal of Freshwater Research 69: 111–136.

    Google Scholar 

  • Loughman, Z. J. & S. A. Welsh, 2010. Distribution and conservation standing of West Virginia crayfish. Southeastern Naturalist 9(Special Issue 3): 63–78.

    Article  Google Scholar 

  • Loughman, Z. J. & T. P. Simon, 2011. Zoogeography, taxonomy, and conservation of West Virginia’s Ohio River floodplain crayfish (Decapoda, Cambaridae). Zookeys 74: 1–78.

    Article  PubMed  Google Scholar 

  • Loughman, Z. J., N. Garrison, S. A. Welsh & T. P. Simon, 2009. Zoogeography, conservation, and ecology of crayfish within the Cheat River basin of the upper Monongahela River drainage, West Virginia. Proceedings of the West Virginia Academy Science 81: 25–42.

    Google Scholar 

  • Merriam, E. R., J. T. Petty, G. T. Merovich Jr., J. B. Fulton & M. P. Strager, 2011. Additive-effects of mining and residential development on stream conditions in a central Appalachian watershed. Journal of the North American Benthological Society 30: 399–418.

    Article  Google Scholar 

  • Merricks, T. C., D. S. Cherry, C. E. Zipper, R. J. Currie & T. W. Valenti, 2007. Coalmine hollow fill and settling pond influences on headwater streams in southern West Virginia, USA. Environmental Monitoring and Assessment 129: 359–378.

    Article  CAS  PubMed  Google Scholar 

  • OEPA (Ohio Environmental Protection Agency), 2006, Methods for assessing habitat in flowing waters—using the Qualitative Habitat Evaluation Index (QHEI). Division of Surface Water, Ecological Assessment Section, Groveport, OH. http://www.epa.state.oh.us/portals/35/documents/qheimanualjune2006.pdf.

  • Olsson, K. & P. Nyström, 2009. Non-interactive effects of habitat complexity and adult crayfish survival and growth of juvenile crayfish (Pacifastacus leniusculus). Freshwater Biology 54: 35–46.

    Article  Google Scholar 

  • Ortmann, A. E., 1909. The destruction of the freshwater fauna in western Pennsylvania. Proceedings of the American Philosophical Society 48: 90–111.

    Google Scholar 

  • Palmer, M. A., E. S. Bernhardt, W. H. Schlesinger, K. N. Eshleman, E. Foufoula-Georgiou, M. S. Hendryx, A. D. Lemly, G. E. Likens, O. L. Loucks, M. E. Power, P. S. White & P. R. Wilcock, 2010. Environmental and human health consequences of mountaintop removal mining. Science 327: 148–149.

    Article  CAS  PubMed  Google Scholar 

  • Parkyn, S. M. & R. D. Collier, 2004. Interaction of press and pulse disturbance on crayfish populations—flood impacts in pasture and forest streams. Hydrobiologia 527: 114–124.

    Article  Google Scholar 

  • Pârvulescu, L., C. Zaharia, A. Satmari & L. Drăguţ, 2013. Is the distribution pattern of the stone crayfish in the Carpathians related to karstic refugia from Pleistocene glaciations? Freshwater Science 32: 1410–1419.

    Article  Google Scholar 

  • Pârvulescu, L. & C. Zaharia, 2014. Distribution and ecological preferences of noble crayfish in the Carpathian Danube basin: biogeographical insights into the species history. Hydrobiologia 726: 53–63.

    Article  Google Scholar 

  • Pond, G. J., 2010. Patterns of Ephemeroptera taxa loss in Appalachian headwater streams (Kentucky, USA). Hydrobiologia 641: 185–201.

    Article  Google Scholar 

  • Pond, G. J., M. E. Passmore, F. A. Borsuk, L. Reynolds & C. J. Rose, 2008. Downstream effects of mountaintop coal mining: comparing biological conditions using family- and genus level macroinvertebrate bioassessment tools. Journal of the North American Benthological Society 27: 717–737.

    Article  Google Scholar 

  • Rankin, E. T., 1995. Habitat indices in water resource quality assessments. Pp. 181–208. In Davis, W. S. & T. P. Simon (eds), Biological Assessment and Criteria. Lewis Publishers, Boca Raton, FL: 415.

    Google Scholar 

  • Taylor, C. A. & G. A. Schuster, 2005. Crayfish of Kentucky. Illinois Natural History Survey Bulletin 28.

  • Warner, R. W., 1971. Distribution of biota in a stream polluted by acid mine drainage. Ohio Journal of Science 71: 202–215.

    Google Scholar 

Download references

Acknowledgments

We would like to thank Nicole A. Garrison, Tricia Gilson, David A. Foltz II, and Nate Taylor for assistance in the field. Financial support for West Virginia Crayfish surveys was provided by the West Virginia Division of Natural Resources. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart A. Welsh.

Additional information

Handling editor: Lee B. Kats

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Welsh, S.A., Loughman, Z.J. Physical habitat and water quality correlates of crayfish distributions in a mined watershed. Hydrobiologia 745, 85–96 (2015). https://doi.org/10.1007/s10750-014-2095-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-2095-y

Keywords

Navigation