Skip to main content
Log in

Ecological significance and phosphorus release potential of phosphate solubilizing bacteria in freshwater ecosystems

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Phosphorus (P) is a limiting nutrient in some freshwater ecosystems. Phosphate solubilizing bacteria (PSB) are candidates for enhancing P availability in rhizoplane, but their P release potential in freshwater environments needs further evaluations. This study conducted in floodplain wetlands correlated PSB abundance, decline in sediment pH, and natural mobilization of sediment Ca–P. PSB were abundantly present in floodplain wetland waters, sediments, and in river and ponds, showing low to moderate Ca–P solubilization activity; PSB from Churni River and Bhomra wetland sediments had comparatively higher activity than those from other environments. In laboratory sediment microcosms, PSB were effective in enhancing available P concentration in interstitial water indicating their P release potential. However, P-fractionation of incubated sediments showed only a short-term decline in Ca–P by PSB, suggesting that Ca–P might not be their sole or preferred metabolic target. Despite low to moderate activity in culture medium, high population density and efficacy in P release in sediment suggest significant role of PSB in P cycling in freshwater environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ann, Y., K. R. Reddy & J. J. Delfino, 2000. Influence of redox potential on phosphorus availability in chemically amended wetland organic soils. Ecological Engineering 14: 169–180.

    Article  Google Scholar 

  • Bagyaraj, D. J., P. U. Krishnaraj & S. P. S. Khanuja, 2000. Mineral phosphate solubilization: agronomic implications, mechanism and molecular genetics. Proceedings of the Indian National Science Academy B66(2&3): 69–82.

    Google Scholar 

  • Battle, J. M. & T. B. Mihuc, 2000. Decomposition dynamics of aquatic macrophytes in the lower Atchafalaya, a large floodplain river. Hydrobiologia 418: 123–136.

    Article  Google Scholar 

  • Boström, B., J. M. Andersen, S. Fleischer & M. Jansson, 1988. Exchange of phosphorus across the sediment-water interface. Hydrobiologia 170: 229–244.

    Article  Google Scholar 

  • Chen, Y. P., P. D. Rekha, A. B. Arun, F. T. Shen, W.-A. Lai & C. C. Young, 2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied Soil Ecology 34: 33–41.

    Article  Google Scholar 

  • Das, S., P. S. Lyla & S. A. Khan, 2007. Biogeochemical processes in the continental slope of Bay of Bengal: I. Bacterial solubilization of inorganic phosphate. Revista de Biologia Tropical 55: 1–9.

    PubMed  Google Scholar 

  • De Souza, B. D., S. Nair & D. Chandramohan, 2000. Phosphate solubilizing bacteria around Indian peninsula. Indian Journal of Marine Science 29: 48–51.

    Google Scholar 

  • Fankem, H., D. Nwaga, A. Deubel, L. Dieng, W. Merbach & F. X. Etoa, 2006. Occurrence and functioning of phosphate solubilizing microorganisms from oil palm tree (Elaeis guineensis) rhizosphere in Cameroon. African Journal of Biotechnology 5: 2450–2460.

    CAS  Google Scholar 

  • Gächter, R. & J. S. Meyer, 1993. The role of microorganisms in mobilization and fixation of phosphorus in sediments. Hydrobiologia 253: 103–121.

    Article  Google Scholar 

  • Geurts, J. J. M., A. J. P. Smolders, A. M. Banach, J. P. M. van de Graf, J. G. M. Roelofs & L. P. M. Lamers, 2010. The interaction between decomposition, net N and P mineralisation and their mobilization to surface water in fens. Water Research 44: 3487–3495.

    Article  CAS  PubMed  Google Scholar 

  • Goldstein, A. H., 1994. Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by gram-negative bacteria. In Torriani-Gorini, A., E. Yagil & S. Silver (eds), Phosphate in Microorganisms: Cellular and Molecular Biology. ASM Press, Washington DC: 197–203.

    Google Scholar 

  • Gyaneshwar, P., G. Naresh Kumar & L. J. Parekh, 1998. Effect of buffering on the phosphate-solubilizing ability of microorganisms. World Journal of Microbiology and Biotechnology 14: 669–673.

    Article  CAS  Google Scholar 

  • Hu, X.-J., Z.-J. Li, Y.-C. Cao, J. Zhang, Y.-X. Gong & Y.-F. Yang, 2010. Isolation and identification of a phosphate solubilizing bacterium Pantoea stewartii subsp. Stewartii g6, and effects of temperature, salinity, and pH on its growth under indoor culture conditions. Aquaculture International 18: 1079–1091.

    Article  CAS  Google Scholar 

  • Illmer, P., A. Barbato & F. Schinner, 1995. Solubilization of hardly-soluble AlPO4 with p-solubilizing microorganisms. Soil Biology and Biochemistry 27: 265–270.

    Article  CAS  Google Scholar 

  • Jackson, M. L., 1973. Soil Chemical Analysis. Prentice-Hall of India Private Limited, New Delhi.

    Google Scholar 

  • Jana, B. B., 2007. Distribution pattern and role of phosphate solubilizing bacteria in the enhancement of fertilizer value of rock phosphate in aquatic ponds: state-of-the-art. Development in Plant and Soil Sciences 102: 229–238.

    Article  Google Scholar 

  • Kalinowska, K., A. Guśpiel, B. Kiersztyn & R. J. Chróst, 2013. Factors controlling bacteria and protists in selected Mazurian eutrophic lakes (North-Eastern Poland) during spring. Aquatic Biosystems 9: 9.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kucey, R. M. N., H. H. Janzen & M. E. Legett, 1989. Microbially mediated increases in plant-available phosphorus. Advances in Agronomy 42: 198–228.

    Google Scholar 

  • Lin, T.-F., H.-I. Huang, F.-T. Shen & C.-C. Young, 2006. The protons of gluconic acid are the major factor responsible for the dissolution of tricalcium phosphate by Burkholderia cepacia CC-A174. Bioresource Technology 97: 957–1060.

    Article  CAS  PubMed  Google Scholar 

  • Maitra N., W. B. Whitman, S. Ayyampalayam, S. Samanta, K. Sarkar, C. Bandopadhyay, M. Aftabuddin, A. P. Sharma & S. K. Manna, 2014. Draft genome sequence of the aquatic phosphorus-solubilizing and -mineralizing bacterium Bacillus sp. strain CPSM8. Genome Announcements 2(1): e01265–13.

  • Mehta, S. & C. S. Nautiyal, 2001. An efficient method for qualitative screening of phosphate-solubilzing bacteria. Current Microbiology 43: 51–56.

    Article  CAS  PubMed  Google Scholar 

  • Millero, F., F. Huang, X. Zhu, X. Liu & J. Zhang, 2001. Adsorption and desorption of phosphate on calcite and aragonite in seawater. Aquatic Geochemistry 7: 33–56.

    Article  CAS  Google Scholar 

  • Mudryk, Z. J., 2004. Decomposition of organic and solubilization of inorganic phosphorus compounds by bacteria isolated from a marine sandy beach. Marine Biology 145: 1227–1234.

    Article  CAS  Google Scholar 

  • Murphy, J. & J. Riley, 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27: 31–36.

    Article  CAS  Google Scholar 

  • Nautiyal, C. S., 1999. An efficient microbiological growth medium for screening phosphate solubilizing bacteria. FEMS Microbiology Letters 170: 265–270.

    Article  CAS  PubMed  Google Scholar 

  • Pérez, E., M. Sulbarán, M. M. Ball & A. Yarzábal, 2007. Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan region. Soil Biology and Biochemistry 39: 2905–2914.

    Article  Google Scholar 

  • Qian, Y., J. Shi, Y. Chen, L. Lou, X. Cui, R. Cao, P. Li & J. Tang, 2010. Characterization of phosphate solubilizing bacteria in sediments from a shallow eutrophic lake and a wetland: isolation, molecular identification and phosphorus release ability determination. Molecules 15: 8518–8533.

    Article  CAS  PubMed  Google Scholar 

  • Ray, A. K., K. Ghosh & E. Ringo, 2012. Enzyme-producing bacteria isolated from fish gut: a review. Aquaculture Nutrition 18: 465–492.

    Article  CAS  Google Scholar 

  • Reddy, K. R. & W. F. DeBusk, 1991. Decomposition of water hyacinth detritus in eutrophic lake water. Hydrobiologia 211: 101–109.

    Article  CAS  Google Scholar 

  • Renjith, K. R., N. Chandramohanakumar & M. M. Joseph, 2011. Fractionation and bioavialbility of phosphorus in a tropical estuary, Southwest India. Environmental Monitoring and Assessment 174: 299–312.

    Article  CAS  PubMed  Google Scholar 

  • Rzepecki, M., 2010. The dynamics of phosphorus in lacustrine sediments: contents and fractions in relation to lake trophic state and chemical composition of bottom sediments. Polish Journal of Ecology 58: 409–427.

    CAS  Google Scholar 

  • Sahu, S. N. & B. B. Jana, 2000. Enhancement of the fertilizer value of rock phosphate engineered through phosphate-solubilizing bacteria. Ecological Engineering 15: 27–39.

    Article  Google Scholar 

  • Sahu, M. K., K. Sivakumar, T. Thangaradjou & L. Kannan, 2007. Phosphate solubilizing actinomycetes in the estuarine environment: an inventory. Journal of Environmental Biology 28: 795–798.

    CAS  PubMed  Google Scholar 

  • Sardessai, S., 1994. Organic carbon and humic acids in sediments of the Arabian Sea and factors governing their distribution: peer-reviewed full-text journals. Oceanologica Acta 17(3): 263–270.

    CAS  Google Scholar 

  • Seshadri, S., S. Ignacimuthu & C. Lakshminarsimhan, 2002. Variations in heterotrophic and phosphate solubilizing bacteria from Chennai, southeast coast of India. Indian Journal of Marine Sciences 31: 69–72.

    CAS  Google Scholar 

  • Sharma, S. B., R. Z. Sayyed, M. H. Trivedi & T. A. Gobi, 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2: 587.

    Article  Google Scholar 

  • Søndergaard, M., J. P. Jensen & E. Jeppesen, 1999. Internal phosphorus loading in shallow Danish lakes. Hydrobiologia 408(409): 145–152.

    Article  Google Scholar 

  • Song, C. L., X. Y. Cao, Y. Y. Liu & Y. Y. Zhou, 2009. Seasonal variations in chlorophyll a concentrations in relation to potentials of sediment phosphate release by different mechanisms in a large Chinese shallow eutrophic lake (Lake Taihu). Geomicrobiology Journal 26: 508–515.

    Article  CAS  Google Scholar 

  • Sri Ramkumar, V. & E. Kannapiran, 2011. Isolation of total heterotrophic bacteria and phosphate solubilizing bacteria and in vitro study of phosphatase activity and production of phytohormones by PSB. Archives of Applied Science Research 3: 581–586.

    CAS  Google Scholar 

  • Sugunan, V. V., 2000. Ecology and fisheries management of reservoirs in India. Hydrobiologia 430: 121–147.

    Article  Google Scholar 

  • Tong, Y., G. Lin, X. Ke, F. Liu, G. Zhu, G. Gao & J. Shen, 2005. Comparison of microbial community between two shallow freshwater lakes in middle Yangtze basin, East China. Chemosphere 60: 85–92.

    Article  CAS  PubMed  Google Scholar 

  • Trivedi, P. & T. Sa, 2008. Pseudomonas corrugate (NRRL B-30409) mutants increased phosphate solubilization, organic acid, and plant growth at lower temperatures. Current Microbiology 56: 140–144.

    Article  CAS  PubMed  Google Scholar 

  • Venkateswaran, K. & R. Natarajan, 1983. Seasonal distribution of inorganic phosphate solubilizing bacteria and phosphate producing bacteria in Porto-Novo waters. Indian Journal of Marine Sciences 12: 213–217.

    Google Scholar 

  • Weber, K. A., L. A. Achenbach & J. D. Coates, 2006. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nature Reviews Microbiology 4: 752–764.

    Article  CAS  PubMed  Google Scholar 

  • Wu, G. F. & X. P. Zhou, 2005. Characterization of phosphorus-releasing bacteria in a small eutrophic shallow lake, Eastern China. Water Research 39: 1035–1040.

    Article  Google Scholar 

  • Xiaojiang, G., X. Shiyuan & Z. Nianli, 2001. Distribution and forms of phosphorus in tidal flat sediments of the Yangtze estuary and coast. Science in China Series B: Chemistry 44: 190–196.

    Article  Google Scholar 

  • Yu, X., X. Liu, T. H. Zhu & G. H. Liu, 2011. Isolation and characterization of phosphate-solubilizing bacteria from walnut and their effect on growth and phosphorus mobilization. Biology and Fertility of Soil 47: 437–446.

    Article  CAS  Google Scholar 

  • Zhou, C., C. Song, D. Huang, Y. Liu, X. Cao & Y. Zhou, 2011. Isolation and characterization of organic phosphorus-mineralizing bacteria in sediment of a Chinese large shallow eutrophic lake (Lake Taihu). Geomicrobiology Journal 28: 660–666.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was conducted under ICAR-funded AMAAS network project on “Microbial phosphorus transformations in inland open waters.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjib Kumar Manna.

Additional information

Handling editor: Stefano Amalfitano

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maitra, N., Manna, S.K., Samanta, S. et al. Ecological significance and phosphorus release potential of phosphate solubilizing bacteria in freshwater ecosystems. Hydrobiologia 745, 69–83 (2015). https://doi.org/10.1007/s10750-014-2094-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-2094-z

Keywords

Navigation