, Volume 748, Issue 1, pp 233–257 | Cite as

Parental care in the Cuatro Ciénegas cichlid, Herichthys minckleyi (Teleostei: Cichlidae)

  • Ronald G. OldfieldEmail author
  • Kapil Mandrekar
  • M. Xavier Nieves
  • Dean A. Hendrickson
  • Prosanta Chakrabarty
  • Brook O. Swanson
  • Hans A. Hofmann


Behavioral studies have often examined parental care by measuring phenotypic plasticity of behavior within a species. Phylogenetic studies have compared parental care among species, but only at broad categories (e.g., care vs. no care). Here we provide a detailed account that integrates phylogenetic analysis with quantitative behavioral data to better understand parental care behavior in the Cuatro Ciénegas cichlid, Herichthys minckleyi. We found that H. minckleyi occurs in a clade of sexually monochromatic or weakly dichromatic monogamous species, but that male and female H. minckleyi have dramatically different reproductive coloration patterns, likely as a result of sexual selection. Furthermore, we found that males are polygynous; large males guard large territories, and smaller males may attempt alternative mating tactics (sneaking). Finally, compared to the closely related monogamous Rio Grande cichlid, H. cyanoguttatus, males of H. minckleyi were present at their nests less often and performed lower rates of aggressive offspring defense, and females compensated for the absence of their mates by performing higher levels of offspring defense. Body color, mating system, and parental care in H. minckleyi appear to have evolved after it colonized Cuatro Ciénegas, and are likely a result of evolution in an isolated, stable environment.


Aggression Cuatro Ciénegas Herichthys Mating systems Polygyny Sexual selection 



We thank Laura Alberici da Barbiano, Chelsea Blake, Caitlin Gabor, Jorge L. Hurtado-Gonzales, Michael Jennions, Hanna Kokko, Diane Neudorf, and Amanda Winn for their helpful comments on the manuscript. The Texas Natural History Collections at the University of Texas at Austin and the University of Michigan Museum of Zoology provided access to specimens. This work was supported by an Engineering Plus National Science Foundation—ADVANCE Opportunity Grant (R.G.O.); by the Teresa Lozano Long Institute of Latin American Studies at the University of Texas at Austin from funds granted to the Institute by the Andrew W. Mellon Foundation (D.A.H.); by the National Science Foundation Grants DEB-0916695 and DEB-1354149 (P.C.); and by the National Science Foundation Grant IOS-0843712, an Alfred P. Sloan Foundation Fellowship, the Dwight W. and Blanche Faye Reeder Centennial Fellowship in Systematic and Evolutionary Biology, and an Institute for Cellular & Molecular Biology Fellowship (H.A.H.).

Supplementary material

10750_2014_2081_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 16 kb)


  1. Ah-King, M., C. Kvarnemo & B. S. Tullberg, 2005. The influence of territoriality and mating system on the evolution of male care: a phylogenetic study on fish. Journal of Evolutionary Biology 18: 371–382.PubMedGoogle Scholar
  2. Alonzo, S. H., 2010. Social and coevolutionary feedbacks between mating and parental investment. Trends in Ecology and Evolution 25: 99–108.PubMedGoogle Scholar
  3. Artigas Azas, J. M., 1992. The Herichthys labridens species group. The Cichlid Room Companion. Viewed 13 June 2011.
  4. Artigas Azas, J. M., 1994a. La Mojarra del Desierto: Herichthys minckleyi. The Cichlid Room Companion. Viewed 18 May 2014.Google Scholar
  5. Artigas Azas, J. M., 1994b. La Mojarra de dos colores: Herichthys bartoni. Cichlid News 4: 10–12, 18–20.Google Scholar
  6. Artigas Azas, J. M., 1996. Herichthys labridens, La Mojarra Caracolera. The Cichlid Room Companion. Viewed 18 May 2014.Google Scholar
  7. Artigas Azas, J. M., 2006. La Mojarra de Tamasopo – Herichthys tamasopoensis. Cichlid News 15: 18–25.Google Scholar
  8. Badyaev, A. V. & G. E. Hill, 2003. Avian sexual dichromatism in relation to phylogeny and ecology. Annual Review of Ecology, Evolution, and Systematics 34: 27–49.Google Scholar
  9. Baerends, G. P. & J. M. Baerends-van Roon, 1950. An introduction to the study of the ethology of cichlid fishes. Behaviour (Supplement) 1: 1–242.Google Scholar
  10. Balshine-Earn, S., 1995. The costs of parental care in Galilee St Peter’s fish, Sarotherodon galilaeus. Animal Behaviour 50: 1–7.Google Scholar
  11. Barlow, G. W., 1974. Contrasts in social behavior between Central American cichlid fishes and coral-reef surgeon fishes. American Zoologist 14: 9–34.Google Scholar
  12. Barlow, G. W., 1976. The Midas cichlid in Nicaragua. In Thorson, T. B. (ed.), Investigations of the Ichthyofauna of Nicaraguan Lakes. School of Life Sciences, University of Nebraska, Lincoln, Nebraska: 333–358.Google Scholar
  13. Barlow, G. W., 1983. Do gold Midas cichlid fish win fights because of their color, or because they lack normal coloration? Behavioral Ecology and Sociobiology 13: 197–204.Google Scholar
  14. Barlow, G. W., 1991. Mating systems among cichlid fishes. In Keenleyside, M. H. A. (ed.), Cichlid Fishes: Behaviour, Ecology and Evolution. Chapman and Hall University Press, Cambridge: 173–190.Google Scholar
  15. Barlow, G. W., 2000. The Cichlid Fishes, Nature’s Grand Experiment in Evolution. Perseus Publishing, Cambridge, MA.Google Scholar
  16. Baylis, J. R., 1981. The evolution of parental care in fishes, with reference to Darwin’s rule of male sexual selection. Environmental Biology of Fishes 6: 223–251.Google Scholar
  17. Benjamini, Y. & Y. Hochberg, 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society B 57: 289–300.Google Scholar
  18. Brown, W. H., 1953. Introduced fish species of the Guadalupe River Basin. Texas Journal of Science 2: 245–251.Google Scholar
  19. Brown, J. M., S. M. Hedtke, A. R. Lemmon & E. M. Lemmon, 2010. When trees grow too long: investigating the causes of highly inaccurate Bayesian branch length estimates. Systematic Biology 59: 145–161.PubMedGoogle Scholar
  20. Buchanan, T. M., 1971. The reproductive ecology of the Rio Grande Cichlid, Cichlasoma cyanoguttatum (Baird and Girard). Ph.D. Thesis, University of Texas, Austin.Google Scholar
  21. Chakrabarty, P., M. P. Davis, R. Berquist, K. Gledhill, J. Sparks & L. Frank, 2011a. Evolution of the light organ system in ponyfishes (Teleostei:Leiognathidae). Journal of Morphology 272: 704–721.PubMedGoogle Scholar
  22. Chakrabarty, P., M. P. Davis, W. L. Smith, Z. H. Baldwin & J. S. Sparks, 2011b. Is sexual selection driving diversification of the bioluminescent ponyfishes (Teleostei: Leiognathidae)? Molecular Ecology 20: 2818–2834.PubMedGoogle Scholar
  23. Cohen, A. E., D. A. Hendrickson, C. Parmesan & J. C. Marks, 2005. Habitat segregation among trophic morphs of the Cuatro Cienégas cichlid (Herichthys minckleyi). Hidrobiológica 15: 169–181.Google Scholar
  24. Cunningham, E. J. A. & T. R. Birkhead, 1998. Sex roles and sexual selection. Animal Behaviour 56: 1311–1321.PubMedGoogle Scholar
  25. Davies, N. B., 1989. Sexual conflict and the polygamy threshold. Animal Behaviour 38: 226–234.Google Scholar
  26. De La Maza-Benignos, M. & M. D. L. Lozano-Vilano, 2013. Description of three new species of the genus Herichthys (Perciformes: Cichlidae) from eastern Mexico, with redescription of H. labridens, H. steindachneri, and H. pantostictus. Zootaxa 3734: 101–129.Google Scholar
  27. De la Maza-Benignos, M., C. P. Ornelas-García, M. de Lourdes Lozano-Vilano, M. E. García-Ramírez & I. Doadrio, 2014. Phylogeographic analysis of genus Herichthys (Perciformes: Cichlidae), with descriptions of Nosferatu new genus and H. tepehua n. sp. Hydrobiologia: 1–31.Google Scholar
  28. Dijkstra, P. D., O. Seehausen & T. G. G. Groothuis, 2005. Direct male-male competition can facilitate invasion of new colour types in Lake Victoria cichlids. Behavioral Ecology and Sociobiology 58: 136–143.Google Scholar
  29. Emlen, S. T. & L. W. Oring, 1977. Ecology, sexual selection, and the evolution of mating systems. Science 197: 215–223.PubMedGoogle Scholar
  30. Fink, W. L., 1982. The conceptual relationship between ontogeny and phylogeny. Paleobiology 8: 254–264.Google Scholar
  31. Garland, T. & S. C. Adolph, 1994. Why not to do 2-species comparative studies – limitations on inferring adaptation. Physiological Zoology 67: 797–828.Google Scholar
  32. Gittleman, J. L., 1989. The comparative approach in ethology: aims and limitations. In Bateson, P. P. G. & P. H. Klopfer (eds), Perspectives in Ethology, Vol. 8. Plenum Press, New York: 55–83.Google Scholar
  33. Gonzalez-Voyer, A. & N. Kolm, 2010. Parental care and investment. In Encyclopedia of Life Sciences (ELS). Wiley, Chichester. doi: 10.1002/9780470015902.a0021907.
  34. Gonzalez-Voyer, A., J. L. Fitzpatrick & N. Kolm, 2008. Sexual selection determines parental care patterns in cichlid fishes. Evolution 62: 2015–2026.PubMedGoogle Scholar
  35. Goodwin, N. B., S. Balshine & J. D. Reynolds, 1998. Evolutionary transitions in parental care in cichlid fish. Proceedings of the Royal Society B 265: 2265–2272.PubMedCentralGoogle Scholar
  36. Gross, M. R., 1996. Alternative reproductive strategies and tactics: diversity within sexes. Trends in Ecology and Evolution 11: 92–98.PubMedGoogle Scholar
  37. Gross, M. R., 2005. The evolution of parental care. Quarterly Review of Biology 80: 37–45.PubMedGoogle Scholar
  38. Gross, M. R. & R. C. Sargent, 1985. The evolution of male and female parental care in fishes. American Zoologist 25: 807–822.Google Scholar
  39. Grüter, C. & B. Taborsky, 2005. Sex ratio and the sexual conflict about brood care in a bi-parental mouthbrooder. Behavioural Ecology and Sociobiology 58: 44–52.Google Scholar
  40. Hofmann, H. A., M. E. Benson & R. D. Fernald, 1999. Social status regulates growth rate: consequences for life-history strategies. Proceedings of the National Academy of Sciences USA 95: 14171–14176.Google Scholar
  41. Hulsey, C. D., J. Marks, D. A. Hendrickson, C. A. Williamson, A. E. Cohen & M. J. Stephens, 2006. Feeding specialization in Herichthys minckleyi: a trophically polymorphic fish. Journal of Fish Biology 68: 1399–1410.Google Scholar
  42. Hulsey, C. D., P. R. Hollingsworth, Jr. & J. A. Fordyce, 2010. Temporal diversification of Central American cichlids. BMC Evolutionary Biology 10: 279.PubMedCentralPubMedGoogle Scholar
  43. Itzkowitz, M., 1984. Parental division of labor in a monogamous fish. Behaviour 89: 251–261.Google Scholar
  44. Itzkowitz, M., 1985. Sexual differences in offspring defense in a monogamous cichlid fish. Zeitschrift Tierpsychologie 70: 247–255.Google Scholar
  45. Itzkowitz, M. & J. Nyby, 1982. Field observations of parental behavior of the Texas cichlid, Cichlasoma cyanoguttatum. American Midland Naturalist 108: 364–368.Google Scholar
  46. IUCN, 2013. IUCN Red List of Threatened Species, Version 2013.2. Downloaded on 31 May 2014.
  47. Katoh, R., H. Munehara & M. Kohda, 2005. Alternative male mating tactics of the substrate brooding cichlid Telmatochromis temporalis in Lake Tanganyika. Zoological Science 22: 555–561.PubMedGoogle Scholar
  48. Keenleyside, M. H. A., 1983. Mate desertion in relation to adult sex ratio in the biparental cichlid fish Herotilapia multispinosa. Animal Behaviour 31: 683–688.Google Scholar
  49. Keenleyside, M. H. A., 1991. Parental care. In Keenleyside, M. H. A. (ed.), Cichlid Fishes: Behaviour, Ecology and Evolution. Chapman and Hall University Press, Cambridge: 191–208.Google Scholar
  50. Keenleyside, M. H. A. & R. W. Mackereth, 1992. Effects of loss of male parent on brood survival in a biparental cichlid fish. Environmental Biology of Fishes 34: 207–212.Google Scholar
  51. Keenleyside, M. H. A., R. C. Bailey & V. H. Young, 1990. Variation in the mating system and associated parental behaviour of captive and free-living Cichlasoma nigrofasciatum (Pisces, Cichlidae). Behaviour 112: 202–221.Google Scholar
  52. Kidd, M. R., N. Duftner, S. Koblmüller, C. Sturmbauer & H. A. Hofmann, 2012. Repeated parallel evolution of parental care strategies within Xenotilapia, a genus of cichlid fishes from Lake Tanganyika. PLoS One 7: e31236.PubMedCentralPubMedGoogle Scholar
  53. Kokko, H. & M. D. Jennions, 2008. Parental investment, sexual selection and sex ratios. Journal of Evolutionary Biology 21: 919–948.PubMedGoogle Scholar
  54. Kokko, H. & M. D. Jennions, 2012. Sex differences in parental care. In Royle, N., P. T. Smiseth & M. Kölliker (eds), The Evolution of Parental Care. Oxford University Press, Oxford: 101–116.Google Scholar
  55. Kokko, H., H. Klug & M. D. Jennions, 2012. Unifying cornerstones of sexual selection: operational sex ratio, Bateman gradient and the scope for competitive investment. Ecology Letters 15: 1340–1351.PubMedGoogle Scholar
  56. Konings, A., 1989. Cichlids from Central America. TFH Publications, Neptune, NJ.Google Scholar
  57. Konings, A., 1994. An extremely rare colour morph of Herichthys minckleyi. The Cichlid Yearbook, Vol. 4. Cichlid Press, St. Leon-Rot: 68–69.Google Scholar
  58. Kornfield, I. L. & R. K. Koehn, 1975. Genetic variation and speciation in New World cichlids. Evolution 29: 427–437.Google Scholar
  59. Kornfield, I. & J. N. Taylor, 1983. A new species of polymorphic fish, Cichlasoma minckleyi, from Cuatro Ciénegas, Mexico (Teleostei: Cichladae). Proceedings of the Biological Society of Washington 96: 253–269.Google Scholar
  60. Kornfield, I., D. C. Smith & P. S. Gagnon, 1982. The cichlid fish of Cuatro Ciénegas, Mexico: direct evidence of conspecificity among distinct trophic morphs. Evolution 36: 658–664.Google Scholar
  61. Kvarnemo, C. & I. Ahnesjö, 1996. The dynamics of operational sex ratios and competition for mates. Trends in Ecology and Evolution 11: 404–408.PubMedGoogle Scholar
  62. Lampert, L. & E. Hanneman, 2002. Herichthys deppii (Heckel, 1840): rediscovering a lost species. Buntbarsche Bulletin 208: 10.Google Scholar
  63. Lehtonen, T. K., B. B. M. Wong, K. Lindström & A. Meyer, 2011a. Species divergence and seasonal succession in rates of mate desertion in closely related Neotropical cichlid fishes. Behavioural Ecology and Sociobiology 65: 607–612.Google Scholar
  64. Lehtonen, T. K., B. B. M. Wong, P. A. Svensson & A. Meyer, 2011b. Adjustment of brood care behaviour in the absence of a mate in two species of Nicaraguan crater lake cichlids. Behavioural Ecology and Sociobiology 65: 613–619.Google Scholar
  65. Lewis, P. O., 2001. A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology 50: 913–925.PubMedGoogle Scholar
  66. Liem, K. E. & L. S. Kaufman, 1984. Intraspecific macroevolution: functional biology of the polymorphic cichlid species Cichlasoma minckleyi. In Echelle, A. A. & I. Kornfield (eds), Evolution of Species Flocks. University of Maine Press, Orono, ME: 203–215.Google Scholar
  67. Losos, J. B., 1999. Uncertainty in the reconstruction of ancestral character states and limitations on the use of phylogenetic comparative methods. Animal Behaviour 58: 1319–1324.PubMedGoogle Scholar
  68. Maddison, W. P. & D. R. Maddison, 2011. Mesquite: A Modular System for Evolutionary Analysis, Version 2.75
  69. Mank, J. E., D. E. L. Promislow & J. C. Avise, 2005. Phylogenetic perspectives in the evolution of parental care in ray-finned fishes. Evolution 59: 1570–1578.PubMedGoogle Scholar
  70. Martin, T. R., 2000. Range extension for Rio Grande cichlid Cichlasoma cyanoguttatum (Pisces: Cichlidae) in Texas. Texas Journal of Science 52: 173–175.Google Scholar
  71. Martins, E. P., 1996. Phylogenies and the Comparative Method in Animal Behavior. Oxford University Press, New York.Google Scholar
  72. McDonald, J. H., 2009. Handbook of Biological Statistics, 2nd ed. Sparky House Publishing, Baltimore, MD.Google Scholar
  73. McKaye, K. R., 1977. Competition for breeding sites between the cichlid fishes of Lake Jiloá, Nicaragua. Ecology 58: 291–302.Google Scholar
  74. McKaye, K. R., 1986. Mate choice and size assortative pairing by the cichlid fishes of Lake Jiloá, Nicaragua. Journal of Fish Biology 29: 135–150.Google Scholar
  75. McMahan, C. D., A. D. Geheber & K. R. Piller, 2010. Molecular systematics of the enigmatic Middle American genus Vieja. Molecular Phylogenetics and Evolution 57: 1293–1300.PubMedGoogle Scholar
  76. Miller, R. M., W. L. Minckleyi & S. M. Norris, 2005. Freshwater Fishes of Mexico. University of Chicago Press, Chicago.Google Scholar
  77. Minckley, W. L., 1969. Environments of the bolson of Cuatro Ciénegas, Coahuila, Mexico, with special reference to the aquatic biota. Texas Western Press, The University of Texas at El Paso, Science Series 2: 1–65.Google Scholar
  78. Mock, D. W. & M. Fujioka, 1990. Monogamy and long-term pair bonding in vertebrates. Trends in Ecology and Evolution 5: 39–43.PubMedGoogle Scholar
  79. Moore, A. J. & P. J. Moore, 1999. Balancing sexual selection through opposing mate choice and male competition. Proceedings of the Royal Society of London, Series B 266: 711–716.Google Scholar
  80. Morley, J. I. & S. Balshine, 2002. Faithful fish: territory and mate defence favour monogamy in an African cichlid fish. Behavioural Ecology and Sociobiology 52: 326–331.Google Scholar
  81. Nagoshi, M., 1987. Survival of broods under parental care and parental roles of the cichlid fish, Lamprologus toae, in Lake Tanganyika. Ichthyological Research 34: 71–75.Google Scholar
  82. Neil, S. J., 1984. Field studies of the behavioral ecology and agonistic behavior of Cichlasoma meeki (Pisces: Cichlidae). Environmental Biology of Fishes 10: 59–68.Google Scholar
  83. Nelson, J. S., 2006. Fishes of the World, 4th ed. Wiley, Hoboken, NJ.Google Scholar
  84. Nunney, L. & K. A. Campbell, 1993. Assessing minimum viable population size: demography meets population genetics. Trends in Ecology and Evolution 8: 234–239.PubMedGoogle Scholar
  85. O’Connell, L. A., B. J. Matthews & H. A. Hofmann, 2012. Isotocin regulates paternal care in a monogamous cichlid fish. Hormones and Behavior 61: 725–733.PubMedGoogle Scholar
  86. O’Hara, R. B. & D. J. Kotze, 2010. Do not log-transform count data. Methods in Ecology and Evolution 1: 118–122.Google Scholar
  87. Oldfield, R. G., 2009. Captive breeding observations support the validity of a recently described cichlid species in Lake Apoyo, Nicaragua. University of Michigan Museum of Zoology Occasional Papers 741: 1–14.Google Scholar
  88. Oldfield, R. G., 2011. Aggression and welfare in a common aquarium fish, the Midas cichlid. Journal of Applied Animal Welfare Science 14: 340–360.PubMedGoogle Scholar
  89. Oldfield, R. G. & H. A. Hofmann, 2011. Neuropeptide regulation of social behavior in a monogamous cichlid fish. Physiology and Behavior 102: 296–303.PubMedGoogle Scholar
  90. Oldfield, R. G., R. Harris, D. A. Hendrickson & H. A. Hofmann, 2013. Vasotocin and androgen pathways are associated with mating system variation in North American cichlid fishes. Hormones and Behavior 64: 44–52.PubMedGoogle Scholar
  91. Olson, V. A., T. J. Webb, R. P. Freckleton & T. Székely, 2009. Are parental care trade-offs in shorebirds driven by parental investment or sexual selection? Journal of Evolutionary Biology 22: 672–682.PubMedGoogle Scholar
  92. Podos, J., 2001. Correlated evolution of morphology and vocal signal structure in Darwin’s finches. Nature 409: 185–188.PubMedGoogle Scholar
  93. Price, J. J., M. K. Clapp & K. E. Omland, 2011. Where have all the trees gone? The declining use of phylogenies in animal behaviour journals. Animal Behaviour 81: 667–670.Google Scholar
  94. Rambaut, A. & A. J. Drummond, 2009. Tracer v1.5. Viewed 28 February 2013.
  95. Reis, R. E., S. O. Kullander & C. J. Ferraris, Jr. (eds), 2003. Check List of the Freshwater Fishes of South and Central America. Edipucrs Publisher, Porto Alegre.Google Scholar
  96. Reynolds, J. D., 1996. Animal breeding systems. Trends in Ecology and Evolution 11: 68–72.PubMedGoogle Scholar
  97. Rogers, W., 1987. Sex ratio, monogamy and breeding success in the Midas cichlid (Cichlasoma citrinellum). Behavioural Ecology and Sociobiology 21: 47–51.Google Scholar
  98. Ronquist, F. & J. P. Huelsenbeck, 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.PubMedGoogle Scholar
  99. Royle, N. J., P. T. Smiseth & M. Kölliker, 2012. The Evolution of Parental Care. Oxford University Press, Oxford.Google Scholar
  100. Sage, R. D. & R. K. Selander, 1975. Trophic radiation through polymorphism in cichlid fishes. Proceedings of the National Academy of Sciences of the United States of America 72: 4669–4673.PubMedCentralPubMedGoogle Scholar
  101. Salzburger, W., 2009. The interaction of sexually and naturally selected traits in the adaptive radiations of cichlid fishes. Molecular Ecology 18: 169–185.PubMedGoogle Scholar
  102. Schliewen, U., K. Rassmann, M. Markmann, J. Markert, T. Kocher & D. Tautz, 2001. Genetic and ecological divergence of a monophyletic cichlid species pair under fully sympatric conditions in Lake Ejagham, Cameroon. Molecular Ecology 10: 1471–1488.PubMedGoogle Scholar
  103. Seehausen, O., P. J. Mayhew & J. J. M. van Alphen, 1999. Evolution of colour patterns in East African cichlid fish. Journal of Evolutionary Biology 12: 514–534.Google Scholar
  104. Shine, R., 1989. Ecological causes for the evolution of sexual size dimorphism: a review of the evidence. Quarterly Review of Biology 64: 419–461.PubMedGoogle Scholar
  105. Slatkin, M., 1984. Ecological causes of sexual dimorphism. Evolution 38: 622–630.Google Scholar
  106. Smith, W. L., P. Chakrabarty & J. S. Sparks, 2008. Phylogeny, taxonomy, and evolution of Neotropical cichlids (Teleostei:Cichlidae:Cichlinae). Cladist 24: 1–17.Google Scholar
  107. Staeck, W. & H. Linke, 1985. American Cichlids II: Large Cichlids, A Handbook for Their Identification, Care, and Breeding. Tetra-Verlag, Melle, Germany.Google Scholar
  108. Swanson, B. O., A. C. Gibb, J. C. Marks & D. A. Hendrickson, 2003. Trophic polymorphism and behavioral differences decrease intraspecific competition in a cichlid, Herichthys minckleyi. Ecology 84: 1441–1446.Google Scholar
  109. Swanson, B. O., A. C. Gibb, J. C. Marks & D. A. Hendrickson, 2005. Do movement patterns differ between laboratory and field suction feeding behaviors in a Mexican cichlid? Environmental Biology of Fishes 74: 201–208.Google Scholar
  110. Taborsky, M., 1994. Sneakers, satellites, and helpers: parasitic and cooperative behavior in fish reproduction. Advances in the Study of Behavior 23: 1–100.Google Scholar
  111. Taylor, J. N. & R. R. Miller, 1983. Cichlid fishes (genus Cichlasoma) of the Rio Panuco Basin, eastern Mexico, with description of a new species. Occasional Papers of the Museum of Natural History of the University of Kansas 104: 1–24.Google Scholar
  112. Thomas, G. H. & T. Székely, 2005. Evolutionary pathways in shorebird breeding systems: sexual conflict, parental care, and chick development. Evolution 59: 2222–2230.PubMedGoogle Scholar
  113. Townshend, T. J. & R. J. Wootton, 1985. Variation in the mating system of a biparental cichlid fish, Cichlasoma panamense. Behaviour 95: 181–197.Google Scholar
  114. Trapani, J., 2003a. Morphological variability in the Cuatro Ciénegas cichlid, Cichlasoma minckleyi. Journal of Fish Biology 62: 276–298.Google Scholar
  115. Trapani, J., 2003b. Geometric morphometric analysis of body-form variability in Cichlasoma minckleyi, the Cuatro Ciénegas cichlid. Environmental Biology of Fishes 68: 357–369.Google Scholar
  116. Trapani, J., 2004. A morphometric analysis of polymorphism in the pharyngeal dentition of Cichlasoma minckleyi (Teleostei: Cichlidae). Archives of Oral Biology 49: 825–835.Google Scholar
  117. Turner, G. F. & M. T. Burrows, 1995. A model of sympatric speciation by sexual selection. Proceedings of the Royal Society, London (Series B) 260: 287–292.Google Scholar
  118. van den Berghe, E. P. & K. R. McKaye, 2001. Reproductive success of maternal and biparental care in a Nicaraguan cichlid fish, Parachromis dovii. In Coleman, R. M. (ed.), Cichlid Research: State of the Art. Journal of Aquariculture and Aquatic Sciences 9: 49–65.Google Scholar
  119. van Dijk, R. E., A. Pogány, J. Komdeur, P. Lloyd & T. Székely, 2010. Sexual conflict predicts morphology and behavior in two species of penduline tits. BMC Evolutionary Biology 10: 107.PubMedCentralPubMedGoogle Scholar
  120. van Doorn, G. S., P. Edelaar & F. J. Weissing, 2009. On the origin of species by natural and sexual selection. Science 326: 1704–1707.PubMedGoogle Scholar
  121. Wagner, C. E., L. J. Harmon & O. Seehausen, 2012. Ecological opportunity and sexual selection together predict adaptive radiation. Nature 487: 366–369.PubMedGoogle Scholar
  122. Westneat, D. F. & R. C. Sargent, 1996. Sex and parenting: the effects of sexual conflict and parentage on parental strategies. Trends in Ecology and Evolution 11: 87–91.PubMedGoogle Scholar
  123. Wisenden, B. D., 1994. Factors affecting male mate desertion in the biparental cichlid fish (Cichlasoma nigrofasciatum) in Costa Rica. Behavioral Ecology 5: 439–447.Google Scholar
  124. Yanagisawa, Y., 1985. Parental strategy of the cichlid fish Perissodus microlepis, with particular reference to intraspecific brood ‘farming out’. Environmental Biology of Fishes 12: 211–249.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ronald G. Oldfield
    • 1
    • 2
    • 3
    Email author
  • Kapil Mandrekar
    • 4
  • M. Xavier Nieves
    • 3
  • Dean A. Hendrickson
    • 5
  • Prosanta Chakrabarty
    • 6
  • Brook O. Swanson
    • 7
  • Hans A. Hofmann
    • 8
  1. 1.Texas Research Institute for Environmental StudiesSam Houston State UniversityHuntsvilleUSA
  2. 2.Department of Integrative BiologyThe University of Texas at AustinAustinUSA
  3. 3.Department of BiologyCase Western Reserve UniversityClevelandUSA
  4. 4.Department of Environmental and Forest Biology, College of Environmental Science and ForestryThe State University of New YorkSyracuseUSA
  5. 5.Department of Integrative Biology and Texas Natural History CollectionsThe University of Texas at AustinAustinUSA
  6. 6.Ichthyology Section, Museum of Natural Science, Department of Biological SciencesLouisiana State UniversityBaton RougeUSA
  7. 7.Biology DepartmentGonzaga UniversitySpokaneUSA
  8. 8.Department of Integrative Biology, Institute for Cellular and Molecular Biology, Institute for NeuroscienceThe University of Texas at AustinAustinUSA

Personalised recommendations