Advertisement

Hydrobiologia

, Volume 750, Issue 1, pp 171–185 | Cite as

Ecosystem impacts of the widespread non-indigenous species in the Baltic Sea: literature survey evidences major limitations in knowledge

  • Henn Ojaveer
  • Jonne Kotta
TRENDS IN AQUATIC ECOLOGY

Abstract

Invasion of non-indigenous species (NIS) is acknowledged as one of the most important external drivers affecting structure and functions of marine ecosystems globally. This paper offers literature-based analysis on the effects of the widespread (occurring in at least 50% of countries) and currently established NIS on ecosystem features in the Baltic Sea. It appears that out of the 18 NIS taxa studied, there are no published records on 28% of NIS for any of the seven impact categories investigated. When ecological impacts are known, laboratory experimental evidence dominates over field studies. Combined observations on impact strength, information type and confidence level suggest that the two benthic invertebrates, the polychaete Marenzelleria spp. and the zebra mussel Dreissena polymorpha (Pallas 1771) exert the highest ecosystem impact. Despite continuously accumulating information on the NIS effects, however, the confidence of findings is still low. Thus, we still understand very little on both the direction and magnitude of the effects of even the most widespread NIS on the structure and dynamics of the Baltic Sea ecosystems. In order to increase reliability of such assessments, future research should be targeted towards spatially-explicit field surveys and experimenting of multitrophic systems, together with modelling of ecosystem impact.

Keywords

Non-native species Abiotic and biotic impacts Information type Effect magnitude Confidence level 

Notes

Acknowledgments

This work was partially financed by the Estonian Ministry of Education and Research (Grant SF0180005s10) and Institutional research funding IUT02-20 of the Estonian Research Council. The research leading to these results has also received funding from BONUS, the joint Baltic Sea research and development programme (Art 185), funded jointly from the European Union’s Seventh Programme for research, technological development and demonstration, and from the Estonian Research Council (BIO-C3 project). The research leading to these results has also received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration (FP7/2007-2013) within the Ocean of Tomorrow call under Grant Agreement No. 266445 for the project Vectors of Change in Oceans and Seas Marine Life, Impact on Economic Sectors (VECTORS).

Conflict of interest

There are no conflict of interests.

References

  1. Almqvist, G., A. K. Strandmark & M. Appelberg, 2010. Has the invasive round goby caused new links in Baltic food webs? Environmental Biology of Fishes 89: 79–93.Google Scholar
  2. Antsulevich, A. & P. Välipakka, 2000. Cercopagis pengoi—new important food object of the Baltic herring in the Gulf of Finland. International Revue of Hydrobiology 85: 609–619.Google Scholar
  3. AquaNIS. Editorial Board, 2013. Information system on Aquatic Non-Indigenous and Cryptogenic Species. World Wide Web electronic publication. www.corpi.ku.lt/databases/aquanis. Version 2.36+. Accessed 2014-06-23.
  4. Arbaciauskas, K. & S. Gumuliauskaite, 2007. Invasion of the Baltic Sea basin by the Ponto-Caspian amphipod Pontogammarus robustoides and its ecological impact. In Gherardi, F. (ed.), Biological Invaders in Inland Waters: Profiles, Distribution, and Threats. Springer, Berlin: 463–477.Google Scholar
  5. Berezina, N. A. & V. E. Panov, 2003. Establishment of new gammarid species in the eastern Gulf of Finland (Baltic Sea) and their effects on littoral communities. Proceedings of the Estonian Academy of Sciences. Biology. Ecology 52: 284–304.Google Scholar
  6. Berezina, N., S. Golubkov & J. Gubelit, 2005. Grazing effects of alien amphipods on macroalgae in the littoral zone of the Neva Estuary (Eastern Gulf of Finland, Baltic Sea). Oceanological and Hydrobiological Studies 34(Supplement 1): 63–82.Google Scholar
  7. Blackburn, T. M., F. Essl, T. Evans, P. E. Hulme, J. M. Jeschke, I. Kühn, S. Kumschick, Z. Marková, A. Mrugała, W. Nentwig, J. Pergl, P. Pyšek, W. Rabitsch, A. Ricciardi, D. M. Richardson, A. Sendek, M. Vilà, J. R. U. Wilson, M. Winter, P. Genovesi & S. Bacher, 2014. A unified classification of alien species based on the magnitude of their environmental impacts. PLoS Biology 12(5): e1001850.PubMedCentralPubMedGoogle Scholar
  8. Bonaglia, S., M. Bartoli, J. S. Gunnarsson, L. Rahm, C. Raymond, O. Svensson, S. Shakeri Yekta & V. Brüchert, 2013. Effect of reoxygenation and Marenzelleria spp. bioturbation on Baltic Sea sediment metabolism. Marine Ecology Progress Series 482: 43–55.Google Scholar
  9. Burckhardt, R., R. Schumann & R. Bochert, 1997. Feeding biology of the pelagic larvae of Marenzelleria cf. viridis (Polychaeta: Spionidae) from the Baltic Sea. Aquatic Ecology 31: 149–162.Google Scholar
  10. Bzoma, S., 1998. The contribution of round goby (Neogobius melanostomus Pallas, 1811) to the food supply of cormorants (Phalacrocorax carbo Linnaeus, 1758) feeding in the Puck Bay. Bulletin of the Sea Fisheries Institute 2: 39–47.Google Scholar
  11. Bzoma, S. & W. Meissner, 2005. Some results of long-term counts of waterbirds wintering in the western part of the Gulf of Gdansk (Poland), with special emphasis on the increase int he number of cormorants (Phalacrocorax carbo). Acta Zoologica Lituanica 15: 105–108.Google Scholar
  12. Carlton, J. T., 1996. Biological invasions and cryptogenic species. Ecology 77: 1653–1655.Google Scholar
  13. Chotkovski, M. A. & J. E. Marsden, 1999. Round goby and mottled sculpin predation on lake trout eggs and fry: field predictions from laboratory measurements. Journal of Great Lakes Research 25: 26–35.Google Scholar
  14. Costello, M. J., M. Coll, R. Danovaro, P. Halpin, H. Ojaveer & P. A. Miloslavich, 2010. Census of marine biodiversity knowledge, resources, and future challenges. PLoS ONE 5(8): e12110.PubMedCentralPubMedGoogle Scholar
  15. Czerniejewski, P., A. Rybczyk & W. Wawrzyniak, 2010. Diet of the Chinese mitten crab, Eriocheir sinensis H. Milne Edwards, 1853, and potential effects of the crab on the aquatic community in the River Odra/Oder estuary (N.-W. Poland). Crustaceana 83: 195–205.Google Scholar
  16. Davidson, A. D. & C. Hewitt, 2014. How often are invasion-induced ecological impacts missed? Biological Invasions 16: 1165–1173.Google Scholar
  17. Daunys, D., P. Zemlys, S. Olenin, A. Zaiko & C. Ferrarin, 2006. Impact of the zebra mussel Dreissena polymorpha invasion on the budget of suspended matter in a shallow lagoon ecosystem. Helgoland Marine Research 60: 113–120.Google Scholar
  18. Delefosse, M. & E. Kristensen, 2012. Burial of Zostera marina seeds in sediment inhabited by three polychaetes: laboratory and field studies. Journal of Sea Research 71: 41–49.Google Scholar
  19. Delefosse, M., G. T. Banta, P. Canal-Vergés, G. Penha-Lopes, C. O. Quintana, T. Valdemarsen & E. Kristensen, 2012. Macrobenthic community response to the Marenzelleria viridis (Polychaeta) invasion of a Danish estuary. Marine Ecology Progress Series 461: 83–94.Google Scholar
  20. Dinasquet, J., J. Titelman, L. F. Møller, O. Setälä, L. Granhag, T. Andersen, U. Båmstedt, M. Haraldsson, A. Hosia, T. Katajisto, T. Kragh, J. Kuparinen, M.-L. Schrøter, M. Søndergaard, P. Tiselius & L. Riemann, 2012. Cascading effects of the ctenophore Mnemiopsis leidyi on the planktonic food web in a nutrient-limited estuarine system. Marine Ecology Progress Series 460: 49–61.Google Scholar
  21. Edelist, D., G. Rilov, D. Golani, J. T. Carlton & E. Spanieret, 2013. Restructuring the Sea: profound shifts in the world’s most invaded marine ecosystem. Diversity and Distributions 19: 69–77.Google Scholar
  22. Eriksson Wiklund, A. K. & A. Andersson, 2014. Benthic competition and population dynamics of Monoporeia affinis and Marenzelleria sp. in the northern Baltic Sea. Estuarine, Coastal and Shelf Sciences. doi: 10.1016/j.ecss.2014.04.008.
  23. European Commission, 2008. Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive). Official Journal of the European Communities L164: 19–40.Google Scholar
  24. European Commission, 2010. Decision on criteria and methodological standards on good environmental status of marine waters. Decision 2010/477/EU. Official Journal of the European Communities L 232: 14–24.Google Scholar
  25. Foster, G. D., S. M. Baksi & J. C. Means, 1987. Bioaccumulation of trace organic contaminants from sediment by Baltic clams (Macoma balthica) and soft-shell clams (Mya arenaria). Environmental Toxicology and Chemistry 6: 969–976.Google Scholar
  26. Galil, B. S., A. Marchini, A. Occhipinti-Ambrogi, D. Minchin, A. Narščius, H. Ojaveer & S. Olenin, 2014. International arrivals: widespread bioinvasions in European Seas. Ethology Ecology & Evolution 26: 152–171.Google Scholar
  27. Geller, J. B., J. A. Darling & J. T. Carlton, 2010. Genetic perspectives on marine biological invasions. Annual Review of Marine Science 2: 367–393.PubMedGoogle Scholar
  28. Golubkov, S. M., S. Back, V. N. Nikulina, M. I. Orlova, L. E. Anokhina & L. P. Umnova, 2003. Effects of eutrophication and invasion of Dreissena polymorpha in the coastal zone of the eastern Gulf of Finland. Proceedings of the Estonian Academy of Sciences Biology Ecology 52: 218–235.Google Scholar
  29. Gorokhova, E., T. Fagerberg & S. Hansson, 2004. Predation by herring (Clupea harengus) on Cercopagis pengoi in a western Baltic Sea bay. ICES Journal on Marine Science 61: 959–965.Google Scholar
  30. Gorokhova, E., S. Hansson, H. Höglander & C. M. Andersen, 2005. Stable isotopes show food web changes after invasion by the preda tory cladoceran Cercopagis pengoi in a Baltic Sea bay. Oecologia 143: 251–259.PubMedGoogle Scholar
  31. Grabowski, M., A. Konopacka, K. Jazdzewski & E. Janowska, 2006. Invasions of alien gammarid species and retreat of natives in the Vistula Lagoon (Baltic Sea, Poland). Helgoland Marine Research 60: 90–97.Google Scholar
  32. Grabowski, M., K. Jazdzewski & A. Konopacka, 2007. Alien crustacea in polish waters—amphipoda. Aquatic Invasions 2: 25–38.Google Scholar
  33. Granberg, M. E., J. S. Gunnarsson, J. E. Hedman, R. Rosenberg & P. Jonsson, 2008. Bioturbation-driven release of organic contaminants from Baltic Sea sediments mediated by the invading polychaete Marenzelleria neglecta. Environmental Science & Technology 42: 1058–1065.Google Scholar
  34. Granhag, L., L. F. Møller & L. J. Hansson, 2011. Size-specific clearance rates of the ctenophore Mnemiopsis leidyi based on in situ gut content analyses. Journal of Plankton Research 33: 1043–1052.Google Scholar
  35. Hedman, J. E., J. Stempa Tocca & J. S. Gunnarsson, 2009. Remobilisation of polychlorinated biphenyl from the Baltic Sea sediment: comparing the roles of bioturbation and physical resuspension. Environmental Toxicology and Chemistry 28: 2241–2249.PubMedGoogle Scholar
  36. HELCOM, 2010. Towards a tool for quantifying anthropogenic pressures and potential impacts on the Baltic Sea marine environment: a background document on the method, data and testing of the Baltic Sea Pressure and Impact Indices. Baltic Sea Environmental Proceedings Number 125. HELCOM, Helsinki.Google Scholar
  37. Hedman, J. E., C. Bradshaw, M. H. Thorsson, M. Gilek & J. F. Gunnarsson, 2008. Fate of contaminants in Baltic Sea sediments: role of bioturbation and settling organic matter. Marine Ecology Progress Series 356: 25–38.Google Scholar
  38. Hietanen, S., A. O. Laine & K. Lukkari, 2007. The complex effects of the invasive polychaetes Marenzelleria spp. on benthic nutrient dynamics. Journal of Experimental Marine Biology and Ecology 352: 89–102.Google Scholar
  39. Holliland, P. B., T. Holmborn & E. Gorokhova, 2012. Assessing diet of the non-indigenous predatory cladoceran Cercopagis pengoi using stable isotopes. Journal of Plankton Research 34: 376–387.Google Scholar
  40. Järv, L., J. Kotta, I. Kotta & T. Raid, 2011. Linking the structure of benthic invertebrate communities and the diet of native and invasive fish species in a brackish water ecosystem. Annales Zoologoci Fennici 48: 129–141.Google Scholar
  41. Jaspers, C., J. Titelman, L. J. Hansson, M. Haraldsson & C. R. Ditlefsen, 2011. The invasive ctenophore Mnemiopsis leidyi poses no direct threat to Baltic cod eggs and larvae. Limnology and Oceanography 56: 431–439.Google Scholar
  42. Javidpour, J., J. C. Molinero, A. Lehmann, T. Hansen & U. Sommer, 2009. Annual assessment of the predation of Mnemiopsis leidyi in a new invaded environment, the Kiel Fjord (Western Baltic Sea): a matter of concern? Journal of Plankton Research 31: 729–738.Google Scholar
  43. Jazdzewski, K., A. Konopacka & M. Grabowski, 2004. Recent drastic changes in the gammarid fauna (Crustacea, Amphipoda) of the Vistula River deltaic system in Poland caused by alien invaders. Diversity and Distributions 10: 81–87.Google Scholar
  44. Jonsson, A., T. G. Nielsen, I. Hrubenja, M. Maar & J. K. Petersen, 2009. Eating your competitor: functional triangle between turbulence, copepod escape behavior and predation from mussels. Marine Ecology Progress Series 376: 143–151.Google Scholar
  45. Josefsson, S., K. Leonardsson, J. S. Gunnarsson & K. Wiberg, 2011. Influence of contaminant burial depth on the bioaccumulation of PCBs and PBDEs by two benthic invertebrates (Monoporeia affinis and Marenzelleria spp.). Chemosphere 85: 1444–1451.PubMedGoogle Scholar
  46. Josefson, A. B., J. Norkko & A. Norkko, 2012. Burial and decomposition of plant pigments in surface sediments of the Baltic Sea: role of oxygen and benthic fauna. Marine Ecology Progress Series 455: 33–49.Google Scholar
  47. Karjalainen, M., M. Reinikainen, F. Lindvall, L. Spoof & J. A. O. Meriluoto, 2003. Uptake and accumulation of dissolved, radiolabeled nodularin in Baltic Sea zooplankton. Environmental Toxicology 18: 53–60.Google Scholar
  48. Karlson, A. M. L., G. Almqvist, K. E. Skóra & M. Appelberg, 2007. Indications of competition between non-indigenous round goby and native flounder in the Baltic Sea. ICES Journal of Marine Science 64: 479–486.Google Scholar
  49. Katsanevakis, S., I. Wallentinus, A. Zenetos, E. Leppäkoski, M. E. Çinar, B. Oztürk, M. Grabowski, D. Golani & A. C. Cardoso, 2014. Impacts of invasive alien marine species on ecosystem services and biodiversity: a pan-European review. Aquatic Invasions 9. doi: 10.3391/ai.2014.9.4.01.
  50. Korpinen, S. & V. Jormalainen, 2008. Grazing effects in macroalgal communities depend on timing of patch colonization. Journal of Experimental Marine Biology and Ecology 360: 39–46.Google Scholar
  51. Kotta, J. & F. Mohlenberg, 2004. Grazing impact of Mytilus edulis L. and Dreissena polymorpha (Pallas) in the Gulf of Riga, Baltic Sea estimated from biodeposition rates of algal pigments. Annales Zooloogica Fennici 39: 151–160.Google Scholar
  52. Kotta, J. & E. Olafsson, 2003. Competition for food between the introduced polychaete Marenzelleria viridis (Verrill) and the native amphipod Monoporeia affinis Lindström in the Baltic Sea. Journal of Sea Research 50: 27–35.Google Scholar
  53. Kotta, J., H. Orav & I. Kotta, 1998. Distribution and filtration activity of the zebra mussel, Dreissena polymorpha, in the Gulf of Riga and the Gulf of Finland. Proceedings of the Estonian Academy of Sciences 47: 32–41.Google Scholar
  54. Kotta, J., H. Orav & E. Sandberg-Kilpi, 2001. Ecological consequence of the introduction of the polychaete Marenzelleria cf viridis into a shallow-water biotope of the northern Baltic Sea. Journal of Sea Research 46: 273–280.Google Scholar
  55. Kotta, J., K. Torn, G. Martin, H. Orav-Kotta & T. Paalme, 2004. Seasonal variation in invertebrate grazing on Chara connivens and C. tomentosa in Kõiguste Bay, NE Baltic Sea. Helgoland Marine Research 58: 71–76.Google Scholar
  56. Kotta, J., I. Kotta, M. Simm, A. Lankov, V. Lauringson, A. Põllumäe & H. Ojaveer, 2006. Ecological consequences of biological invasions: three invertebrate case studies in the north-eastern Baltic Sea. Helgoland Marine Research 60: 106–112.Google Scholar
  57. Kotta, J., H. Orav-Kotta & K. Herkül, 2010. Separate and combined effects of habitat-specific fish predation on the survival of invasive and native gammarids. Journal of Sea Research 64: 369–372.Google Scholar
  58. Kotta, J., H. Orav-Kotta, K. Herkül & I. Kotta, 2011. Habitat choice of the invasive Gammarus tigrinus and the native Gammarus salinus indicates weak interspecific competition. Boral Environment Research 16(Supplement A): 64–72.Google Scholar
  59. Kotta, J., M. Pärnoja, T. Katajisto, M. Lehtiniemi, S. A. Malavin, G. Reisalu & V. E. Panov, 2013. Is a rapid expansion of the invasive amphipod Gammarus tigrinus Sexton, 1939 associated with its niche selection: a case study in the Gulf of Finland, the Baltic Sea. Aquatic Invasions 8: 319–332.Google Scholar
  60. Kotta, J., H. Orav-Kotta, I. Kotta, M. Pärnoja, K. Nurkse & I. Kuprijanov, 2014a. The first reproducing crab species in the Baltic Sea—the invasion and impacts of Rhithropanopeus harrisii. 10th International Temperate Reefs Symposium, Perth, Australia, 12-17.01.2014, Abstract Book, p. 119.Google Scholar
  61. Kotta, J., K. Torn, G. Reisalu & T. Veber, 2014b. Relationships between mechanical disturbance and biomassof the invasive amphipod Gammarus tigrinus within a charophyte-dominated macrophyte community. Marine Ecology 35(Supplement 1): 11–18.Google Scholar
  62. Lankov, A., H. Ojaveer, M. Simm, M. Põllupüü & C. Möllmann, 2010. Feeding ecology of pelagic fish species in the Gulf of Riga (Baltic Sea): the importance of changes in the zooplankton community. Journal of Fish Biology 77: 2268–2284.PubMedGoogle Scholar
  63. Lauringson, V., E. Mälton, J. Kotta, K. Kangur, H. Orav-Kotta & I. Kotta, 2007. Environmental factors influencing the biodeposition of the suspension feeding bivalve Dreissena polymorpha (Pallas): comparison of brackish and freshwater populations. Estuarine, Coastal and Shelf Science 75: 459–467.Google Scholar
  64. Lauringson, V., J. Kotta, H. Orav-Kotta & K. Kaljurand, 2013. Diet of mussels Mytilus trossulus and Dreissena polymorpha in a brackish nontidal environment. Marine Ecology 35(Supplement 1): 56–66.Google Scholar
  65. Lehtiniemi, M. & E. Gorokhova, 2008. Predation of the introduced cladoceran Cercopagis pengoi on the native copepod Eurytemora affinis in the northern Baltic Sea. Marine Ecology Progress Series 362: 193–200.Google Scholar
  66. Leppäkoski, E., S. Gollasch, P. Gruszka, H. Ojaveer, S. Olenin & V. Panov, 2002. The Baltic—a sea of invaders. Canadian Journal of Fisheries and Aquatic Sciences 59: 1175–1188.Google Scholar
  67. Litvinchuk, L. F. & I. V. Telesh, 2006. Distribution, population structure and ecosystem effects of the invader Cercopagis pengoi (Polyphemoidea, Cladocera) in the Gulf of Finland and the open Baltic Sea. Oceanologia 48(S): 243–257.Google Scholar
  68. Lotze, H. K. & B. Worm, 2009. Historical baselines for large marine animals. Trends in Ecology and Evolution 25: 254–262.Google Scholar
  69. Madsen, C. V. & H. U. Riisgaard, 2010. Ingestion-rate method for measurement of clearance rates of the ctenophore Mnemiopsis leidyi. Aquatic Invasions 5: 357–361.Google Scholar
  70. Marentette, J. R., K. L. Gooderham, M. E. McMaster, T. Ng, J. L. Parrott, J. Y. Wilson, C. M. Wood & S. Balshine, 2010. Signatures ofcontamination in invasive round gobies (Neogobius melanostomus): a double strike for ecosystem health? Ecotoxicology and Environmental Safety 73: 1755–1764.PubMedGoogle Scholar
  71. Marohn, L., E. Jakob & R. Hanel, 2013. Implications of facultative catadromy in Anguilla anguilla. Does individual migratory behaviour influence eel spawner quality? Journal of Sea Research 77: 100–106.Google Scholar
  72. Maximov, A. A., 2011. Large-scale invasion of Marenzelleria spp. (Polychaeta; Spionidae) in the Eastern Gulf of Finland, Baltic Sea. Russian Journal of Biological Invasions 2: 11–19.Google Scholar
  73. Møller, E. F., 2007. Production of dissolved organic carbon by sloppy feeding in the copepods Acartia tonsa, Centropages typicus, and Temora longicornis. Limnology and Oceanography 52: 79–84.Google Scholar
  74. Neideman, R., J. Wenngren & E. Ólafsson, 2003. Competition between the introduced polychaete Marenzelleria sp. and the native amphipod Monoporeia affinis in Baltic soft bottoms. Marine Ecology Progress Series 264: 49–55.Google Scholar
  75. Norkko, J., D. C. Reed, K. Timmermann, A. Norkko, B. Gustafsson, E. Bonsdorff, C. P. Slomp, J. Carstensen & D. J. Conley, 2012. A welcome can of worms? Hypoxia mitigation by an invasive species. Global Change Biology 18: 422–434.Google Scholar
  76. Normant, M., J. Korthals & A. Szaniawska, 2007. Epibitoa associated with setae on Chinese mitten crab claws (Erioscheir sinensis H. Milne-Edwards, 1853): a first record. Oceanologia 49: 137–143.Google Scholar
  77. Ojaveer, H. & A. Lumberg, 1995. On the role of Cercopagis (Cercopagis) pengoi (Ostroumov) in Pärnu Bay and the NE part of the Gulf of Riga ecosystem. Proceedings of the Estonian Academy of Sciences. Ecology 5: 20–25.Google Scholar
  78. Ojaveer, H., E. Leppäkoski, S. Olenin & A. Ricciardi, 2002. Ecological impacts of Ponto-Caspian invaders in the Baltic Sea, European inland waters and the Great Lakes: an inter-ecosystem comparison. In Leppäkoski, E., S. Gollasch & S. Olenin (eds), Invasive Aquatic Species of Europe: Distribution, Impacts And Management. Kluwer Scientific Publishers, Dordrecht: 412–425.Google Scholar
  79. Ojaveer, H., M. Simm & A. Lankov, 2004. Population dynamics and ecological impact of the nonindigenous Cercopagis pengoi in the Gulf of Riga (Baltic Sea). Hydrobiologia 522: 261–269.Google Scholar
  80. Ojaveer, H., A. Jaanus, B. MacKenzie, G. Martin, S. Olenin, T. Radziejewska, I. Telesh, M. Zettler & A. Zaiko, 2010. Status of biodiversity in the Baltic Sea. PLoS ONE 5(9): e12467.PubMedCentralPubMedGoogle Scholar
  81. Ojaveer, H., J. Kotta, A. Põllumäe, M. Põllupüü, A. Jaanus & M. Vetemaa, 2011. Alien species in a brackish water temperate ecosystem: Annual-scale dynamics in response to environmental variability. Environmental Research 111: 933–942.PubMedGoogle Scholar
  82. Olenin, S. & E. Leppäkoski, 1999. Non-native animals in the Baltic Sea: alteration of benthic habitats in coastal inlets and lagoons. Hydrobiologia 393: 233–243.Google Scholar
  83. Olenin, S., D. Minchin & D. Daunys, 2007. Assessment of biopollution in aquatic ecosystems. Marine Pollution Bulletin 55: 379–394.PubMedGoogle Scholar
  84. Olenin, S., F. Alemany, A. C. Cardoso, S. Gollasch, P. Goulletquer, M. Lehtiniemi, T. McCollin, D. Minchin, L. Miossec, A. Occhipinti-Ambrogi, H. Ojaveer, K. R. Jensen, M. Stankiewicz, I. Wallentinus & B. Aleksandrov, 2010. Marine Strategy Framework Directive—Task Group 2 Report. Non-indigenous species, Office for Official Publications of the European Communities, EU/ICES, Luxembourg.Google Scholar
  85. Olenin, S., A. Narščius, D. Minchin, M. David, B. Galil, S. Gollasch, A. Marchini, A. Occhipinti-Ambrogi, H. Ojaveer & A. Zaiko, 2014. Making non-indigenous species information systems practical for management and useful for research: an aquatic perspective. Biological Conservation 173: 98–107.Google Scholar
  86. Olenina, I., N. Wasmund, S. Hajdu, I. Jurgensone, S. Gromisz, J. Kownacka, K. Toming, D. Vaiciūtė & S. Olenin, 2010. Assessing impacts of invasive phytoplankton: the Baltic Sea case. Marine Pollution Bulletin 60: 1691–1700.PubMedGoogle Scholar
  87. Orav-Kotta, H., J. Kotta, K. Herkül, I. Kotta & T. Paalme, 2009. Seasonal variability in the grazing potential of the invasive amphipod Gammarus tigrinus and the native amphipod Gammarus salinus (Amphipoda: Crustacea) in the northern Baltic Sea. Biological Invasions 11: 597–608.Google Scholar
  88. Orlova, M. I., S. Golubkov, L. Kalinina & N. Ignatieva, 2004. Dreissena polymorpha (Bivalvia: Dreissenidae) in the Neva Estuary (eastern Gulf of Finland, Baltic Sea): is it a biofilter or source for pollution? Marine Pollution Bulletin 49: 196–205.PubMedGoogle Scholar
  89. Orlova, M. I., I. V. Telesh, N. A. Berezina, A. Antsulevich, A. A. Maximov & L. F. Litvinchuk, 2006. Effects of nonindigenous species on diversity and community functioning in the eastern Gulf of Finland (Baltic Sea). Helgoland Marine Research 60: 98–105.Google Scholar
  90. Österblom, H., S. Hansson, U. Larsson, O. Hjerne, F. R. E. Wulff & C. Folke, 2007. Human-induced trophic cascades and ecological regime shifts in the Baltic Sea. Ecosystems 10: 877–889.Google Scholar
  91. Paolucci, E. M., H. J. MacIsaac & A. Ricciardi, 2013. Origin matters: alien consumers inflict greater damage on prey populations than do native consumers. Diversity and Distributions 19: 988–995.Google Scholar
  92. Packalén, A., S. Korpinen & K. K. Lehtonen, 2008. The invasive amphipod species Gammarus tigrinus (Sexton, 1939) can rapidly change littoral communities in the Gulf of Finland (Baltic Sea). Aquatic Invasions 3: 405–412.Google Scholar
  93. Põllumäe, A. & J. Kotta, 2007. Factors describing the distribution of the zooplankton community in the Gulf of Finland in the context of interactions between native and introduced predatory cladocerans. Oceanologia 49: 277–290.Google Scholar
  94. Pūtys, Ž. & J. Zarankaitė, 2010. Diet of the Great Cormorant (Phalacrocorax carbo Sinensis) at the Juodkrantė colony, Lithuania. Acta Zoologica Lituanica 20: 179–189.Google Scholar
  95. Pyšek, P. & D. M. Richardson, 2010. Invasive species, environmental change and management, and health. Annual Review of Environment and Resources 35: 25–55.Google Scholar
  96. Queiros, A. M., J. G. Hiddink, G. Johnson, H. N. Cabral & M. J. Kaiser, 2011. Context dependence of marine ecosystem engineer invasion impacts on benthic ecosystem functioning. Biological Invasions 13: 1059–1075.Google Scholar
  97. Quintana, C. O., E. Kristensen & T. Valdemarsen, 2013. Impact of the invasive polychaete Marenzelleria viridis on the biogeochemistry of sandy marine sediment. Biogeochemistry 115: 95–109.Google Scholar
  98. Radziejewska, T., C. Fenske, B. Wawrzyniak-Wydrowska, P. Riel, A. Woźniczka & P. Gruszka, 2009. The zebra mussel (Dreissena polymorpha) and the benthic community in a coastal Baltic lagoon: another example of enhancement. Marine Ecology 30(Supplement 1): 138–150.Google Scholar
  99. Rakauskas, V., E. Bacevičius, Ž. Pūtys, L. Ložys & K. Arbačiauskas, 2008. Expansion, feeding and parasites of the round goby, Neogobius melanostomus (Pallas, 1811), a recent invader in the Curonian Lagoon, Lithuania. Acta Zoologica Lituanica 18: 180–190.Google Scholar
  100. Rakauskas, V., Ž. Pūtys, J. Dainys, J. Lesutiene, L. Ložys & K. Arbačiauskas, 2013. Increasing population of the invader round goby, Neogobius melanostomus (Actinopterygii: Perciformes: Gobiidae), and its trophic role in the Curonian Lagoon, SE Baltic Sea. Acta Ichthyologica et Piscatoria 43: 95–108.Google Scholar
  101. Renz, J. R. & F. Forster, 2014. Effects of bioirrigation by the three sibling species of Marenzelleria spp. on solute fluxes and porewater nutrient profiles. Marine Ecology Progress Series 505: 145–159.Google Scholar
  102. Ricciardi, A., 2007. Are modern biological invasions an unprecedented form of global change? Conservation Biology 21: 329–336.PubMedGoogle Scholar
  103. Ricciardi, A., S. Avlijas & J. Marty, 2012. Forecasting the ecological impacts of the Hemimysis anomala invasion in North America: lessons from other freshwater mysid introductions. Journal of Great Lakes Research 38: 7–13.Google Scholar
  104. Riisgard, H. U., C. Barth-Jensen & C. V. Madsen, 2010. High abundance of the jellyfish Aurelia aurita excludes the invasive ctenophore Mnemiopsis leidyi to establish in a shallow cove (Kertinge Nor, Denmark). Aquatic Invasions 5: 347–356.Google Scholar
  105. Ruiz, G., P. Fotonoff & A. H. Hines, 1999. Non-indigenous species as stressors in estuarine and marine communities: assessing invasion impacts and interactions. Limnology and Oceanography 44: 950–972.Google Scholar
  106. Ruiz, G., P. Fofonoff, B. Steves A. Dahlstrom, 2011. Marine crustacean invasions in North America: a synthesis of historical records and documented impacts. In Galil, B. S., P. F. Clark & J. T. Carlton (eds), In the Wrong Place—Alien Marine Crustaceans: Distribution, Biology and Impacts. Invading Nature—Springer Series in Invasion Ecology: 215–250.Google Scholar
  107. Schaber, M., H. Haslob, B. Huwer, A. Harjes, H. H. Hinrichsen, M. Storr-Paulsen, J. O. Schmidt, R. Voss, V. Neumann & F. W. Köster, 2011. Spatio-temporal overlap of the alien invasive ctenophore Mnemiopsis leidyi and ichthyoplankton in the Bornholm Basin (Baltic Sea). Biological Invasions 13: 2647–2660.Google Scholar
  108. Simberloff, D., 2011. How common are invasion-induced ecosystem impacts? Biological Invasions 13: 1255–1268.Google Scholar
  109. Simm, M., A. Lankov, M. Põllupüü & H. Ojaveer, 2006. Estimation of consumption rates of the predatory cladoceran Cercopagis pengoi in laboratory conditions. In Ojaveer, H. & J. Kotta (eds), Estonian Marine Institute Report Series 14: 42–47.Google Scholar
  110. Sjöberg, N. B., E. Petersson, H. Wickström & S. Hansson, 2009. Effects of the swimbladder parasite Anguillicola crassus on the migration of European silver eels Anguilla Anguilla in the Baltic Sea. Journal of Fish Biology 74: 2158–2170.PubMedGoogle Scholar
  111. Skora, K. & J. Rzeznik, 2001. Observations on the diet composition of Neogobius melanostomus Pallas 1811 (Gobiidae, Pisces) in the Gulf of Gdansk (Baltic Sea). Journal of Great Lakes Research 27: 290–299.Google Scholar
  112. Sorte, C. J. B., S. L. Williams & J. T. Carlton, 2010. Marine range shifts and species introductions: comparative spread rates and community impacts. Global Ecology and Biogeography 19: 303–316.Google Scholar
  113. Strayer, D. L., 2012. Eight questions about invasions and ecosystem functioning. Ecology Letters 15: 1199–1210.PubMedGoogle Scholar
  114. Szymczak-Żyła, M., B. Wawrzyniak-Wydrowska & G. Kowalewska, 2006. Products of chlorophyll a transformation by selected benthic organisms in the Odra Estuary (Southern Baltic Sea). Hydrobiologia 554: 155–164.Google Scholar
  115. Thiel, R., 1996. The impact of fish predation on the zooplankton community in a southern Baltic bay. Limnologica 26: 123–137.Google Scholar
  116. Thomsen, M. S., J. E. Byers, D. R. Schiel, J. F. Bruno, J. D. Olden, T. Wernberg & B. R. Silliman, 2014. Impacts of marine invaders on biodiversity depend on trophic position and functional similarity. Marine Ecology Progress Series 495: 39–47.Google Scholar
  117. Tiselius, P., C. M. A. Borg, B. W. Hansen, P. J. Hansen, T. G. Nielsen & B. Vismann, 2008. High reproduction, but low biomass: mortality estimates of the copepod Acartia tonsa in a hyper-eutrophic estuary. Aquatic Biology 2: 93–103.Google Scholar
  118. Torn, K., A. Kovtun-Kante, K. Herkül, G. Martin & H. Mäemets, 2014. Distribution and predictive occurrence model of charophytes in Estonian waters. Aquatic Botany. doi: 10.1016/j.aquabot.2014.05.005.
  119. Urban-Malinga, B., J. Warzocha & M. Zalewski, 2013. Effects of the invasive polychaete Marenzelleria spp. on benthic processes and meiobenthos of a species-poor brackish system. Journal of Sea Research 80: 25–34.Google Scholar
  120. Viitasalo, S., 2007. Effects of bioturbation by three macrozoobenthic species and predation by necto-benthic mysids on cladoceran benthic eggs. Marine Ecology Progress Series 336: 131–140.Google Scholar
  121. Viitasalo-Frösén, S., A. O. Laine & M. Lehtiniemi, 2009. Habitat modification mediated by motile surface stirrers versus semi-motile burrowers: potential for a positive feedback mechanism in a eutrophied ecosystem. Marine Ecology Progress Series 376: 21–32.Google Scholar
  122. Wandzel, T., 2003. The food and feeding of the round goby (Neogobius melanostomus Pallas, 1811) from the Puck Bay and the Gulf of Gdañsk. Bulletin of the Sea Fisheries Institute 1: 23–40.Google Scholar
  123. Winkler, H. M. & L. Debus, 1996. Is the polychaete Marenzelleria viridis an important food item for fish? In Andrushaitis, A. (ed.), Proceedings of the 13th Symposium of the Baltic Marine Biologists. Institute of Aquatic Ecology, University of Latvia, Riga: 147–151.Google Scholar
  124. Wolnomiejski, N. & A. Woźniczka, 2008. A drastic reduction in abundance of Dreissena polymorpha Pall. in the Skoszewska Cove (Szczecin Lagoon, River Odra estuary): effects in the population and habitat. Ecological Questions 9: 103–111.Google Scholar
  125. Zaiko, A. & D. Daunys, 2012. Density effects on the clearance rate of the zebra mussel Dreissena polymorpha: flume study results. Hydrobiologia 680: 79–89.Google Scholar
  126. Zaiko, A., D. Daunys & S. Olenin, 2009. Habitat engineering by the invasive zebra mussel Dreissena polymorpha (Pallas) in a boreal coastal lagoon: impact on biodiversity. Helgoland Marine Research 63: 85–94.Google Scholar
  127. Zaiko, A., R. Paskauskas & A. Krevs, 2010. Biogeochemical alteration of the benthic environment by the zebra mussel Dreissena polymorpha (Pallas). Oceanologia 52: 649–667.Google Scholar
  128. Zaiko, A., M. Lehtiniemi, A. Narščius & S. Olenin, 2011. Assessment of bioinvasion impacts on a regional scale: a comparative approach. Biological Invasions 3: 1739–1765.Google Scholar
  129. Zettler, M. L., 1996. Successful establishment of the spionid polychaete, Marenzelleria viridis (Verrill, 1873), in the Darss-Zingst estuary (southern Baltic) and its influence on the indigenous macrozoobenthos. Archive of Fishery and Marine Research 43: 273–284.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Estonian Marine InstituteUniversity of TartuTallinnEstonia

Personalised recommendations