Skip to main content

Assessing the impact of climate change on brown trout (Salmo trutta fario) recruitment

An Erratum to this article was published on 03 March 2015

Abstract

Climate change influences air temperature and precipitation, and as a direct consequence, the annual discharge pattern in rivers will change as climate warming continues. This has an impact on bedload transport and consequently on aquatic life, because coarse sediments in streams provide important habitat for many species. Salmonids, for example, spawn in gravel, and during their early life stages live in or on top of the substrate. We used a multiple model approach to assess how predicted discharge changes affect bedload transport and the vulnerable early life stages of brown trout (Salmo trutta fario) in a prealpine catchment in Switzerland. In the study area, future discharge scenarios predict an increased frequency of flood occurrence in winter and long-lasting low-flow periods in summer. As a result, bed erosion will become more frequent during winter, leading to less stable spawning grounds and deeper scouring, but during summer, an improvement in habitat diversity can be expected, which is advantageous for young-of-the-year fish. To face the future challenges of climate change, we recommend widening of riverbeds and improvements in longitudinal connectivity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • Armstrong, J. D., P. E. Shackley & R. Gardiner, 1994. Redistribution of juvenile salmonid fishes after localized catastrophic depletion. Journal of Fish Biology 45: 1027–1039.

    Article  Google Scholar 

  • Badoux, M., A. Peter, D. Rickenmann, J. Junker, F.U.M. Heimann, M. Zappa, J.M. Turowski, 2014. Geschiebetransport und Forellenhabitate in Gebirgsflüssen der Schweiz: mögliche Auswirkungen der Klimaänderung. Wasser Energie Luft 106: 200–209.

  • Bundesamt für Umwelt BAFU, 2005. Aktualisierte Pardé-Koeffizienten für die Abflussregimetypen nach Aschwanden und Weingartner. Internes Papier, Bundesamt für Umwelt (BAFU), Bern.

    Google Scholar 

  • Bundesamt für Umwelt BAFU (Hrsg.), 2012. Auswirkungen der Klimaänderung auf Wasserressourcen und Gewässer. Synthesebericht zum Projekt «Klimaänderung und Hydrologie in der Schweiz» (CCHydro). Bundesamt für Umwelt, Bern. Umwelt-Wissen Nr. 1217: 76.

  • Bundesamt für Umwelt BAFU, 2013. http://www.hydrodaten.admin.ch/de/index.html?lang=de.

  • Banks, J. W., 1969. A review of the literature on the upstream migration of adult salmonids. Journal of Fish Biology 1: 85–136.

    Article  Google Scholar 

  • Bardonnet, A. & M. Heland, 1994. The influence of potential predators on the habitat preferences of emerging brown trout. Journal of Fish Biology 45: 131–142.

    Article  Google Scholar 

  • Baroiller, J. F., H. D’Cotta & E. Saillant, 2009. Environmental effects on fish sex determination and differentiation. Sexual Development 3: 118–135.

    Article  CAS  PubMed  Google Scholar 

  • Barry, J. J., J. M. Buffington & J. G. King, 2004. A general power equation for predicting bed load transport rates in gravel bed rivers. Water Resources Research 40: W10401.

    Article  Google Scholar 

  • Bathurst, J., J. Ewen, G. Parkin, P. O’Connell & J. Cooper, 2004. Validation of catchment models for predicting land-use and climate change impacts. 3. Blind validation for internal and outlet responses. Journal of Hydrology 287: 74–94.

    Article  Google Scholar 

  • Begert, M., T. Schlegel & W. Kirchhofer, 2005. Homogeneous temperature and precipitation series of Switzerland from 1864 to 2000. International Journal of Climatology 25: 65–80.

    Article  Google Scholar 

  • Bernhard, L. & M. Zappa, 2012. Klimaänderung und natürlicher Wasserhaushalt der Grosseinzugsgebiete der Schweiz. Schlussbericht zum Projekt Klimaänderung und Hydrologie in der Schweiz (CCHydro). Birmensdorf, Eidg. Forschungsanstalt WSL.

  • Birsan, M. V., P. Molnar, P. Burlando & M. Pfaundler, 2005. Streamflow trends in Switzerland. Journal of Hydrology 314: 312–329.

    Article  Google Scholar 

  • Bisson, P. A., J. L. Nielsen, R. A. Palmason & L. E. Grove, 1981. A system of naming habitat types in small streams, with examples of habitat utilization by salmonids during low streamflow. Symposium on acquisition and utilization of aquatic habitat inventory information.

  • Bosshard, T., S. Kotlarski, T. Even & C. Schär, 2011. Spectral representation of the annual cycle in the climate change signal. Hydrological and Earth System Sciences 15: 2777–2788.

    Article  Google Scholar 

  • Brunetti, M., M. Maugeri, T. Nanni, I. Auer, R. Bohm & W. Schöner, 2006. Precipitation variability and changes in the greater Alpine region over the 1800–2003 period. Journal of Geophysical Research-Atmospheres 111 (D11).

  • Chiari, M., K. Friedl & D. Rickenmann, 2010. A one dimensional bedload transport model for steep slopes. Journal of Hydraulic Research 48: 152–160.

    Article  Google Scholar 

  • Coulthard, T. J., J. Ramirez, H. J. Fowler & V. Glenis, 2012. Using the UKCP09 probabilistic scenarios to model the amplified impact of climate change on drainage basin sediment yield. Hydrological Earth System Sciences 16: 4401–4416.

    Article  Google Scholar 

  • Craig, J. K., C. J. Foote & C. C. Wood, 1996. Evidence for temperature-dependent sex determination in sockeye salmon (Oncorhynchus nerka). Canadian Journal of Fisheries and Aquatic Sciences 53: 141–147.

    Article  Google Scholar 

  • Crisp, D. T., 1989. Use of artificial eggs in studies of washout depth and drift distance for salmonid eggs. Hydrobiologia 178: 155–163.

    Article  Google Scholar 

  • Crisp, D. T., 1996. Environmental requirements of common riverine European salmonid fish species in fresh water with particular reference to physical and chemical aspects. Hydrobiologia 323: 201–221.

    Article  Google Scholar 

  • Crozier, L. G., A. P. Hendry, P. W. Lawson, T. P. Quinn, N. J. Mantua, J. Battin, R. G. Shaw & R. B. Huey, 2008. Potential responses to climate change in organisms with complex life histories: evolution and plasticity in Pacific salmon. Evolutionary Applications 1: 252–270.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Diodato, N., E. W. N. Støren, G. Bellocchi & A. Nesje, 2013. Modelling sediment load in a glacial meltwater stream in western Norway. Journal of Hydrology 486: 343–350.

    Article  Google Scholar 

  • Egglishaw, H. J. & P. E. Shackley, 1980. Survival and growth of salmon, Salmo salar (L.), planted in a Scottish stream. Journal of Fish Biology 16: 565–584.

    Article  Google Scholar 

  • Elliott, J. M., 1984. Numerical changes and population regulation in young migratory trout Salmo trutta in a Lake District stream, 1966–83. Journal of Animal Ecology 53: 327–350.

    Article  Google Scholar 

  • Elliott, J. M., 1994. Quantitative Ecology and the Brown Trout. Oxford University press Inc., New York.

  • Elliott, A. H., F. Oehler, J. Schmidt & J. C. Ekanayake, 2012. Sediment modelling with fine temporal and spatial resolution for a hilly catchment. Hydrological Processes 26: 3645–3660.

    Article  Google Scholar 

  • Fehr, R., 1987. A method for sampling very coarse sediments in order to reduce scale effects in movable bed models. Proceedings of IAHR Symposium on Scale Effects in Modelling Sediment Transport Phenomena, Toronto, Canada, August 1986: 383–397.

  • French, J. R., 2003. Airborne LiDAR in support of geomorphological and hydraulic modelling. Earth Surface Processes and Landforms 28: 321–335.

    Article  Google Scholar 

  • Frissell, C. A., W. J. Liss, C. E. Warren & M. D. Hurley, 1986. A hierarchical framework for stream habitat classification – viewing streams in a watershed context. Environmental Management 10: 199–214.

    Article  Google Scholar 

  • Gleick, P. H., 1986. Methods for evaluating the regional hydrologic impacts of global climatic changes. Journal of Hydrology 88: 97–116.

    Article  Google Scholar 

  • Gomez, B. & M. Church, 1989. An assessment of bed-load sediment transport formulas for gravel bed rivers. Water Resources Research 25: 1161–1186.

    Article  Google Scholar 

  • Gomez, B., Y. Cui, A. J. Kettner, D. H. Peacock & J. P. M. Syvitski, 2009. Simulating changes to the sediment transport regime of the Waipaoa River, New Zealand, driven by climate change in the twenty-first century. Global Planetary Change 67: 53–166.

    Article  Google Scholar 

  • Goode, J. R., J. M. Buffington, D. Tonina, D. J. Isaak, R. F. Thurow, S. Wenger, D. Nagel, C. Luce, D. Tetzlaff & C. Soulsby, 2013. Potential effects of climate change on streambed scour and risks to salmonid survival in snow-dominated mountain basins. Hydrological Processes 27: 750–765.

    Article  Google Scholar 

  • Graham, L. P., J. Andreasson & B. Carlsson, 2007. Assessing climate change impacts on hydrology from an ensemble of regional climate models, model scales and linking methods – a case study on the Lule River basin. Climatic Change 81(Suppl. 1): 293–307.

    Article  Google Scholar 

  • Greenberg, L. A., 1994. Effects of predation, trout density and discharge on habitat use by brown trout, Salmo trutta, in artificial streams. Freshwater Biology 32: 1–11.

    Article  Google Scholar 

  • Grost, R. T., W. A. Hubert & T. A. Wesche, 1990. Redd site selection by brown trout in Douglas Creek, Wyoming. Journal of Freshwater Ecology 5: 365–371.

    Article  Google Scholar 

  • Hauer, C., G. Mandlburger & H. Habersack, 2009. Hydraulically related hydro-morphological units: description based on a new conceptual mesohabitat evaluation model (MEM) using LiDAR data as geometric input. River Research Application 25: 29–47.

    Article  Google Scholar 

  • Hauer, C., G. Unfer, H. Holzmann, S. Schmutz & H. Habersack, 2012. The impact of discharge change on physical instream habitats and its response to river morphology. Climate Change 116: 827–850.

    Article  Google Scholar 

  • Heggenes, J., 1996. Habitat selection by brown trout (Salmo trutta) and young Atlantic salmon (S. salar) in streams: static and dynamic hydraulic modelling. Regulated Rivers: Research and Management 12: 155–169.

    Article  Google Scholar 

  • Heggenes, J., J. L. Bagliniere & R. A. Cunjak, 1999. Spatial niche variability for young Atlantic salmon (Salmo salar) and brown trout (S. trutta) in heterogeneous streams. Ecology of Freshwater Fish 8: 1–21.

    Article  Google Scholar 

  • Heimann, F. U. M., D. Rickenmann, J. M. Turowski & J. W. Kirchner, 2014a. sedFlow – an efficient tool for simulating bedload transport, bed roughness, and longitudinal profile evolution in mountain streams. Earth Surface Dynamics Discussion 2: 733–772.

    Article  Google Scholar 

  • Heimann, F. U. M., D. Rickenmann, D. Böckli, M. Badoux, J. M. Turowski & J. W. Kirchner, 2014b. Recalculation of bedload transport observations in Swiss mountain rivers using the model sedFlow. Earth Surface Dynamics Discussion 2: 773–822.

    Article  Google Scholar 

  • Horton, P., B. Schaefli, A. Mezghani, B. Hingray & A. Musy, 2006. Assessment of climate-change impacts on alpine discharge regimes with climate model uncertainty. Hydrological Processes 20: 2091–2109.

    Article  Google Scholar 

  • Jager, H. I., W. Van Winkle & B. D. Holcomb, 1999. Would hydrologic climate changes in Sierra Nevada streams influence trout persistence? Transactions of the American Fisheries Society 128: 222–240.

    Article  Google Scholar 

  • Jasper, K., P. Calanca, D. Gyalistras & J. Fuhrer, 2004. Differential impacts of climate change on the hydrology of two alpine river basins. Climate Research 26: 113–129.

    Article  Google Scholar 

  • Jonsson, N., 1991. Influence of water flow, water temperature and light on fish migration in rivers. Nordic Journal of Freshwater Research 66: 20–35.

    Google Scholar 

  • Jonsson, B. & N. Jonsson, 2011. Habitat use. In Ecology of Atlantic Salmon and Brown Trout: Habitat as a Template for Life Histories, Vol. 33. Springer, New York: 67–135.

  • Keeley, E. R. & J. W. A. Grant, 1995. Allometric and environmental correlates of territory size in juvenile atlantic salmon (Salmo salar). Canadian Journal of Fishery and Aquatic Sciences 52: 186–196.

    Article  Google Scholar 

  • Kirchner, J. W., W. E. Dietrich, F. Iseya & H. Ikeda, 1990. The variability of critical shear stress, friction angle, and grain protrusion in water-worked sediments. Sedimentology 37: 647–672.

    Article  Google Scholar 

  • Kobierska, F., T. Jonas, J. Magnusson, M. Zappa, M. Bavay & S. M. Bernasconi, 2013. Future runoff from a partly glacierized watershed in Central Switzerland: a 2 model approach. Advances in Water Resources 55: 204–214.

    Article  Google Scholar 

  • Kondolf, G. M. & M. G. Wolman, 1993. The sizes of salmonid spawning gravels. Water Resource Research 29: 2275–2285.

    Article  Google Scholar 

  • Köplin, N., B. Schädler, D. Viviroli & R. Weingartner, 2010. How does climate change affect mesoscale catchments in Switzerland? – A framework for a comprehensive assessment. Advances in Geosciences 27: 111–119.

    Article  Google Scholar 

  • Lamb, M. P., W. E. Dietrich & J. G. Venditti, 2008. Is the critical Shields stress for incipient sediment motion dependent on channel-bed slope? Journal of Geophysical Research 113(20): F02008.

    Google Scholar 

  • Layzell, A. L., M. C. Eppes, B. G. Johnson & J. A. Diemer, 2012. Post-glacial range of variability in the Conejos River Valley, southern Colorado, USA: fluvial response to climate change and sediment supply. Earth Surface Processes Landforms 37: 1189–1202.

    Article  Google Scholar 

  • Lobon-Cervia, J., 2004. Discharge-dependent covariation patterns in the population dynamics of brown trout (Salmo trutta) within a Cantabrian river drainage. Canadian Journal of Fisheries and Aquatic Sciences 61: 1929–1939.

    Article  Google Scholar 

  • Maki-Petays, A., T. Muotka, A. Huusko, P. Tikkanen & P. Kreivi, 1997. Seasonal changes in habitat use and preference by juvenile brown trout, Salmo trutta, in a northern boreal river. Canadian Journal of Fisheries and Aquatic Sciences 54: 520–530.

    Google Scholar 

  • Meyer-Peter, E. & R. Müller, 1948. Formulas for bed-load transport. Proceedings of the 2nd Meeting of the International Association for Hydraulic Structures Research: 39–64.

  • Milner, N. J., J. M. Elliott, J. D. Armstrong, R. Gardiner, J. S. Welton & M. Ladle, 2003. The natural control of salmon and trout populations in streams. Fisheries Research 62: 111–125.

    Article  Google Scholar 

  • Moeliker, C. W., 2001. The first case of homosexual necrophilia in the mallard Anas platyrhynchos (Aves: Anatidae). DEINSEA 8: 243–247.

    Google Scholar 

  • Morantz, D. L., R. K. Sweeney, C. S. Shirvell & D. A. Longard, 1987. Selection of microhabitat in summer by juvenile Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences 44: 120–129.

    Article  Google Scholar 

  • Nash, J. E. & J. V. Sutcliffe, 1970. River flow forecasting through conceptual models part I – a discussion of principles. Journal of Hydrology 10: 282–290.

    Article  Google Scholar 

  • Nitsche, M., D. Rickenmann, J. M. Turowski, A. Badoux & J. W. Kirchner, 2011. Evaluation of bedload transport predictions using flow resistance equations to account for macro-roughness in steep mountain streams. Water Resources Research 47: W08513.

    Article  Google Scholar 

  • Nujic, M., 1999. Praktischer Einsatz eines hochgenauen Verfahrens für die Berechnung von tiefengemittelten Strömungen. Mitteilungen des Institutes für Wasserwesen der Universität der Bundeswehr München. Nr. 64.

  • Nujic, M., 2004. Ergänzungen zu Hydro_as-2d. Ein zweidimensionales Modell für die wasserwirtschaftliche Praxis.

  • OcCC & ProClim (Hrsg.), 2007. Klimaänderung und die Schweiz 2050. Erwartete Auswirkungen auf Umwelt. Gesellschaft und Wirtschaft, Bern.

    Google Scholar 

  • Parry, M. L., O. F. Canziani, J. P. Palutikof, P. J. van der Linden & C. E. Hanson, 2007. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.

    Google Scholar 

  • Pironneau, P., 1989. Finite Element Methods for Fluids. Wiley, Chichester.

    Google Scholar 

  • Pulg, U., B. T. Barlaup, K. Sternecker, L. Trepl & G. Unfer, 2013. Restoration of spawning habitats of brown trout (Salmo trutta) in a regulated chalk stream. River Research and Applications 29: 172–182.

    Article  Google Scholar 

  • Raeymaekers, J. A. M., D. Raeymaekers, I. Koizumi, S. Geldof & F. A. M. Volckaert, 2009. Guidelines for restoring connectivity around water mills: a population genetic approach to the management of riverine fish. Journal of Applied Ecology 46: 562–571.

    Article  Google Scholar 

  • Rickenmann, D., 2001. Comparison of bed load transport in torrents and gravel bed streams. Water Resources Research 37: 3295–3305.

    Article  Google Scholar 

  • Rickenmann, D., 2012. Alluvial steep channels: flow resistance, bedload transport and transition to debris flows. In Church, M., P. Biron & A. Roy (eds), Gravel Bed Rivers: Processes, Tools, Environment. Wiley, Chichester: 386–397.

    Chapter  Google Scholar 

  • Rickenmann, D. & A. Recking, 2011. Evaluation of flow resistance equations using a large field data base. Water Resources Research 47: W07538.

    Article  Google Scholar 

  • Riedl, C. & A. Peter, 2013. Timing of brown trout spawning in Alpine rivers with special consideration of egg burial depth. Ecology of Freshwater Fish 22: 384–397.

    Article  Google Scholar 

  • Riley, W. D., D. L. Maxwell, M. G. Pawson & M. J. Ives, 2009. The effects of low summer flow on wild salmon (Salmo salar), trout (Salmo trutta) and grayling (Thymallus thymallus) in a small stream. Freshwater Biology 54: 2581–2599.

    Article  Google Scholar 

  • Rimmer, D. M., U. Paim & R. L. Saunders, 1983. Autumnal habitat shift of juvenile Atlantic salmon (Salmo salar) in a small river. Canadian Journal of Fishery and Aquatic Sciences 40: 671–680.

    Article  Google Scholar 

  • Rimmer, D. M., U. Paim & R. L. Saunders, 1984. Changes in the selection of microhabitat by juvenile Atlantic salmon (Salmo salar) at the summer autumn transition in a small river. Canadian Journal of Fishery and Aquatic Sciences 41: 469–475.

    Article  Google Scholar 

  • Schattan, P., M. Zappa, H. Lischke, L. Bernhard, E. Thürig & B. Diekkrüger, 2013. An approach for transient consideration of forest change in hydrological impact studies. In: Climate and Land Surface Changes in Hydrology, IAHS-IAPSO-IASPEI Assembly, Gothenburg, Sweden (in press, March 2013).

  • Scheurer, K., C. Alewell, D. Baenninger & P. Burkhardt-Holm, 2009. Climate and land-use changes affecting river sediment and brown trout in alpine countries – a review. Environmental Science and Pollution Research 16: 232–242.

    Article  PubMed  Google Scholar 

  • Tritthart, M., C. Hauer, M. Liedermann & H. Habersack, 2008. Computer-aided mesohabitat evaluation, part II – model development and application in river restoration of a large river. In: International Conference on Fluvial Hydraulics, River Flow 2008. 3.-5-9.2008.

  • Turowski, J. M., A. Badoux & D. Rickenmann, 2011. Start and end of bedload transport in gravel-bed streams. Geophysical Research Letters 38: L04401.

    Article  Google Scholar 

  • Unfer, G., C. Hauer & E. Lautsch, 2011. The influence of hydrology on the recruitment of brown trout in an Alpine river, the Ybbs River, Austria. Ecology of Freshwater Fish 20: 438–448.

    Article  Google Scholar 

  • Van der Linden, P. & J. F. B. Mitchell, 2009. ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, Exeter.

    Google Scholar 

  • Verhaar, P. M., P. M. Biron, R. I. Ferguson & T. B. Hoey, 2010. Numerical modelling of climate change impacts on Saint-Lawrence River tributaries. Earth Surface Processes and Landforms 35: 1184–1198.

    Article  Google Scholar 

  • Verhaar, P. M., P. M. Biron, R. I. Ferguson & T. B. Hoey, 2011. Implications of climate change in the twenty-first century for simulated magnitude and frequency of bed-material transport in tributaries of the Saint-Lawrence River. Hydrology Processes 25: 558–1573.

    Article  Google Scholar 

  • Viviroli, D., M. Zappa, J. Gurtz & R. Weingartner, 2009. An introduction to the hydrological modelling system PREVAH and its pre- and post-processing-tools. Environmental Modelling & Software 24: 1209–1222.

    Article  Google Scholar 

  • Wedekind, C. & C. Kung, 2010. Shift of spawning season and effects of climate warming on developmental stages of a grayling (Salmonidae). Conservation Biology 24: 1418–1423.

    Article  PubMed  Google Scholar 

  • Wedekind, C., M. O. Gessner, F. Vazquez, M. Maerki & D. Steiner, 2010. Elevated resource availability sufficient to turn opportunistic into virulent fish pathogens. Ecology 91: 1251–1256.

    Article  CAS  PubMed  Google Scholar 

  • Wentworth, C. K., 1922. A scale of grade and class terms for clastic sediments. Journal of Geology 30: 377–392.

    Article  Google Scholar 

  • Weingartner, R., 1992. Abflussregimes als Grundlage zur Abschätzung von Mittelwerten des Abflusses. Hydrologischer Atlas der Schweiz (Bundesamt für Umwelt BAFU, Bern.):Tafel 5.2.

  • Yamamoto, S., K. Morita, I. Koizumi & K. Maekawa, 2004. Genetic differentiation of white-spotted charr (Salvelinus leucomaenis) populations after habitat fragmentation: Spatial-temporal changes in gene frequencies. Conservation Genetics 5: 529–538.

    Article  CAS  Google Scholar 

  • Zappa, M., L. Bernhard, F. Fundel & S. Jörg-Hess, 2012. Vorhersage und Szenarien von Schnee- und Wasserressourcen im Alpenraum. Forum für Wissen 2012: 19–27.

    Google Scholar 

  • Zeh, M. & W. Dönni, 1994. Restoration of spawning grounds for trout and grayling in the river high-Rhine. Aquatic Sciences 56: 59–69.

    Article  Google Scholar 

  • Zeh-Weissmann, M., C. Könitzer & A. Bertiller, 2009. Strukturen der Fliessgewässer in der Schweiz. Zustand von Sohle, Ufer und Umland (Ökomorphologie); Ergebnisse der Ökomorphologischen Kartierung. Stand: April 2009. Umwelt-Zustand Nr. 0926.

  • Zierl, B. & H. Bugmann, 2005. Global change impacts on hydrological processes in Alpine catchments. Water Resources Research 41: W02028.

    Article  Google Scholar 

  • Zimmer, M. P. & M. Power, 2006. Brown trout spawning habitat selection preferences and redd characteristics in the Credit River, Ontario. Journal of Fish Biology 68: 1333–1346.

    Article  Google Scholar 

Download references

Acknowledgements

The investigations related to the fish habitat and the bedload transport modelling were supported by a Grant of the Swiss National Science Foundation (NRP 61 Project SEDRIVER Contract No. 406140-125975/1) to DR, AP and JMT. The hydrological impact study has been supported by a Grant from the Swiss Federal Office for Environment (CCHydro). We are indebted to the EU FP6 Project ENSEMBLES (Contract 505539) and MeteoSwiss for providing us access to all necessary data. Many thanks go to Reto Haas for support on GIS and in the field. We are also grateful for field support to Salome Mwaiko, Cristina Hertz and Brigitte German. Furthermore, we thank Catherine E. Wagner for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armin Peter.

Additional information

Handling editor: Nicholas R. Bond

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 40 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Junker, J., Heimann, F.U.M., Hauer, C. et al. Assessing the impact of climate change on brown trout (Salmo trutta fario) recruitment. Hydrobiologia 751, 1–21 (2015). https://doi.org/10.1007/s10750-014-2073-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-2073-4

Keywords

  • sedFlow
  • Salmo trutta fario
  • Bedload transport
  • Scouring
  • Mesohabitat
  • Spawning