, Volume 756, Issue 1, pp 139–153 | Cite as

Comparison of manual and semi-automatic underwater imagery analyses for monitoring of benthic hard-bottom organisms at offshore renewable energy installations

  • Aleksej ŠaškovEmail author
  • Thomas G. Dahlgren
  • Yuri Rzhanov
  • Marie-Lise Schläppy


The construction of new offshore wind farms is one of the strategies to fulfill growing demands for “green” renewable energy. Underwater imagery is an important tool in the environmental monitoring of offshore renewable energy installations, especially in rocky benthic environment where traditional techniques are not applicable. Underwater video from the high energy Norwegian Sea coast was used for this study. Traditional manual point-based benthic cover estimations from selected frames were tested against a semi-automatic approach which involved making mosaic images from underwater videos. The study demonstrates that results of manual and semi-automatic benthic cover estimations are similar, although the manual analysis has a much larger spread in the variability of the data with many outliers due to the limited amount of points used in the analysis. Although the number of benthic features that could be extracted by computer using color is fewer than those that can be detected with the human eye, the described semi-automatic method is less biased and less costly in terms of qualified staff. Implementation of the semi-automatic method does not require any programming skills and has the ability to quickly and simply process larger amount of underwater imagery which would be of decisive advantage to the industry.


Underwater video Benthic cover estimation Features color Automatic image analysis Video mosaics 



The study was conducted within Work Package 5 of the Norwegian Centre for Offshore Wind Energy (NORCOWE). We acknowledge the support at marine operations provided by Halvor Mohn, Argus AS and the backing of Vestavind Offshore AS and their representative Dag Breistein. We want to thank the captain and crew of RV “Hakon Mosby” for their support and hard work throughout oceanography cruises. Also we would like to thank Svein Winther, Sergei Olenin, and Erling Heggųy who initiated parts of the project, and provided encouragement and support.


  1. Baatz, M. & A. Schäpe, 2000. Multiresolution segmentation—an optimization approach for high quality multi-scale image segmentation. In Strobl, J., T. Blaschke & G. Griesebner (eds), Angewandte Geographische Informations verarbeitung XII. Wichmann-Verlag, Heidelberg: 12–23.Google Scholar
  2. Bergström, L., L. Kautsky, T. Malm, R. Rosenberg, M. Wahlberg, N. Åstrand capetillo & D. Wilhelmsson, 2014. Effects of offshore wind farms on marine wildlife—a generalized impact assessment. Environmental Research Letters 9(3): 034012.CrossRefGoogle Scholar
  3. Beuchel, F., R. Primicerio, O. J. Lønne, B. Gulliksen & S.-R. Birkely, 2010. Counting and measuring epibenthic organisms from digital photographs: a semiautomated approach. Limnology and Oceanography: Methods 8(2010): 229–240.Google Scholar
  4. Burnett, C. & T. Blaschke, 2003. A multi-scale segmentation/object relationship modeling methodology for landscape analysis. Landscape Theory and Landscape Modeling 168: 233–249.Google Scholar
  5. Bevilacqua, S., A. Fraschetti, L. Musco & A. Terlizzi, 2009. Taxonomic sufficiency in the detection of natural and human-induced changes in marine assemblages: a comparison of habitats and taxonomic groups. Marine Pollution Bulletin 58: 1850–1859.PubMedCrossRefGoogle Scholar
  6. Carleton, J. H. & T. J. Done, 1995. Quantitative video sampling of coral reef benthos: large-scale application. Coral Reefs 14: 35–46.CrossRefGoogle Scholar
  7. Dalghren, T. G., M.-L. Schläppy, A. Šaškov, M. H. Andersson, Y. Rzhanov & I. Fer, 2014. Assessing the impact of windfarms in subtidal, exposed marine areas. In Shields, M. A. & A. I. L. Payne (eds), Marine Renewable Energy Technology and Environmental Interactions, Humanity and the Sea. Springer Science + Business Media, Dordrecht: 39–48.CrossRefGoogle Scholar
  8. Defeo, O. & D. Lercari, 2004. Testing taxonomic resolution levels for ecological monitoring in sandy beach macrobenthic communities. Aquatic Conservation Marine and Freshwater Ecosystems 14: 65–74.CrossRefGoogle Scholar
  9. Duntley, S. Q., 1963. Light in the sea. Journal of Optical Society of America 53: 214–233.CrossRefGoogle Scholar
  10. Dethier, M. N., S. Elizabeth, T. S. Graham, S. Cohen & L. M. Tear, 1993. Visual versus random-point percent cover estimations: “objective” is not always better. Marine Ecology Progress Series 96: 93–100.CrossRefGoogle Scholar
  11. Fonseca, A. & I. M. Raimundo Jr, 2007. A simple method for water discrimination based on an light emitting diode (LED) photometer. Analytica Chimica Acta 596: 66–72.PubMedCrossRefGoogle Scholar
  12. Foster, M. S., 1991. Point versus photo quadrat estimates of the cover of sessile marine organisms. Journal of Experimental Marine Biology and Ecology 146: 193–203.CrossRefGoogle Scholar
  13. Fu, L.-M., W.-J. Ju, C.-C. Liu, R.-J. Yang & T.-N. Wange, 2014. Integrated microfluidic array chip and LED photometer system for sulfur dioxide and methanol concentration detection. Chemical Engineering Journal 243: 421–427.CrossRefGoogle Scholar
  14. Garrabou, J., J. Riera & M. Zabala, 1998. Landscape pattern indices applied to Mediterranean subtidal rocky benthic communities. Landscape Ecology 13: 225–247.CrossRefGoogle Scholar
  15. Garrabou, J., E. Ballesteros & M. Zabala, 2002. Structure and dynamics of north-western Mediterranean rocky benthic communities along a depth gradient. Estuarian Coastal Shelf Science 55: 493–508.CrossRefGoogle Scholar
  16. Gleason, A. C. R., Reid, R. P., Voss, K. J. 2007. Automated classification of underwater multispectral imagery for coral reef monitoring, Proceedings of MTS/IEEE Oceans 2007, 1–4 October, 2007.Google Scholar
  17. Golmen, L.G., 2007. Potensiale for havenergiproduksjon i Møre og Romsdal, in: 04/2007, R.r.N. (Ed.), Runde miljøsenter/Energuide rapport om bølgje/tide energi i M&R. Runde miljøsenter. Norway: 53 pp.Google Scholar
  18. Guinda, X., A. Gracia, A. Puente, J. A. Juanes, Y. Rzhanov & L. Mayer, 2013. Application of landscape mosaics for the assessment of subtidal macroalgae communities using the CFR index. Deep-Sea Research II. doi: 10.1016/j.dsr2.2013.09.037i.Google Scholar
  19. Jensen, J. R., 1996. Introductory digital image processing, 2nd ed. Prentice-Hall, Inc., Upper Saddle River: 379 pp.Google Scholar
  20. Kohler, K. E. & S. M. Gill, 2006. Coral Point Count with Excel extensions (CPCe): a visual basic program for the determination of coral and substrate coverage using random point count methodology. Computers & Geoscience 32: 1259–1269.CrossRefGoogle Scholar
  21. Lampadariou, N., I. Karakassis & T. H. Pearson, 2005. Cost/benefit analysis of a benthic monitoring programme of organic benthic enrichment using different sampling and analysis methods. Marine Pollution Bulletin 50: 1606–1618.PubMedCrossRefGoogle Scholar
  22. Leonard, G. H. & R. P. Clark, 1993. Point quadrat versus video transect estimates of the cover of benthic red algae. Marine Ecology Progres Series 101: 203 pp.CrossRefGoogle Scholar
  23. Magagna, D., Greaves, D., Conley, D., O’Hagan, A. M., Holmes, B., Witt, M., et al. 2012. How Experiences of the Offshore Wind Industry Can Aid Development of the Wave Energy Sector: Lessons Learnt from EIA Studies. Proceedings of the Twenty-second (2012) International Offshore and Polar Engineering Conference. Rhodes, June 17–22, 2012: 644–651Google Scholar
  24. Meese, R. J. & P. A. Tomich, 1992. Dots on the rocks: a comparison of percent cover estimation methods. Journal of Experimental Marine Biology and Ecology 165: 59–73.CrossRefGoogle Scholar
  25. Miller, I. & R. Müller, 1999. Validity and reproducibility of benthic cover estimates made during broad scale surveys of coral reefs by manta tow. Coral Reefs 18: 353–356.CrossRefGoogle Scholar
  26. Mortazavi, H., J. P Oakley, J. P., Barkat, B. 2013. Mitigating the effect of optical back-scatter in multispectral underwater imaging Measurement Science and Technololy 24: 074025Google Scholar
  27. Neubert, M., H. Herold & G. Meinel, 2006. Evaluation of remote sensing image segmentation quality—further results and concepts. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Salzburg.Google Scholar
  28. Ohlhorst, S. L., Liddell, W. D., Taylor, R. J., Taylor, J. M.1988. Evaluation of reef census techniques. In: Choat, J. H., Barnes, D., Borowitzka, M. A., Coll, J. C., Davies, P. J., Flood, P., Hatcher, B. G., Hopley, D., Hutchings, P. A., Kinsey, D., Orme, G. R., Pichon, M., Sale, P. F., Sammarco, P., Wallace, C. C., Wilkinson, C., Wolanski, E., Bellwood, O. (eds), Sixth International Coral Reef Symposium, Townsville: 319–324Google Scholar
  29. Olsgard, F., P. J. Somerfield & M. R. Carr, 1998. Relationship between taxonomic resolution, macrobenthic community patterns and disturbance. Marine Ecology Progress Series 127: 25–36.CrossRefGoogle Scholar
  30. Ottersen, G., E. Olsen, G. I. Meeren, A. Dommasnes & H. Loeng, 2011. The Norwegian plan for integrated ecosystem-based management of the marine environment in the Norwegian Sea. Marine Policy 35: 389–398.CrossRefGoogle Scholar
  31. Pech, D., A. R. Condal, E. Bourget & P. L. Ardisson, 2004. Abundance estimation of rocky shore invertebrates at small spatial scale by high-resolution digital photography and digital image analysis. Journal of Experimental Marine Biology and Ecology 299: 185–199.CrossRefGoogle Scholar
  32. Rzhanov, Y., Mayer, L., Fornari, D. 2004. Deep-sea image processing. Proceedings of Oceans’04, Kobe: 647–652Google Scholar
  33. Schläppy, M.-L., A. Šaškov & T. G. Dahlgren, 2014. Impact hypothesis for offshore windfarms: explanatory models for species distribution at extremely exposed rocky areas. Continental Shelf Research 83: 14–23.CrossRefGoogle Scholar
  34. Shields, M. A., L. J. Dillon, D. K. Woolf & A. T. Ford, 2009. Strategic priorities for assessing ecological impacts of marine renewable energy devices in the Pentland Firth (Scotland, UK). Marine Policy 33: 635–642.CrossRefGoogle Scholar
  35. Shields, M. A., D. K. Woolf, E. P. M. Grist, S. A. Kerr, A. C. Jackson, R. E. Harris, M. C. Bell, R. Beharie, A. Want, M. Osalusi, W. Stuart, S. W. Gibb & J. Side, 2011. Marine renewable energy: the ecological implications of altering the hydrodynamics of the marine environment. Ocean Coast Management 54: 2–9.CrossRefGoogle Scholar
  36. Solan, M., J. Germanob, D. Rhoadsc, C. Smithd, E. Michaude, D. Parryg, F. Wenzhoferh, B. Kennedyi, C. Henriquesa, E. Battlea, D. Careyj, L. Ioccok, R. Valentel, J. Watsonm & R. Rosenberg, 2003. Towards a greater understanding of pattern, scale and process in marine benthic systems: a picture is worth a thousand worms. Journal of Experimental Marine Biology and Ecology 285–286: 313–338.CrossRefGoogle Scholar
  37. Somerfield, P. J. & K. R. Clarke, 1995. Taxonomic levels, in marine community studines revisited. Marine Ecology Progress Series 127: 113–119.CrossRefGoogle Scholar
  38. Teixidó, N., J. Garrabou & W. E. Arntz, 2002. Spatial pattern quantification of Antarctic benthic communities using landscape indices. Marine Ecology Progress Series 242: 1–14.CrossRefGoogle Scholar
  39. Teixidó, N., A. Albajes-Eizagirre, D. Bolbo, E. Le Hir, M. Demestre, J. Garrabou, L. Guigues, J. M. Gili, J. Piera, T. Prelot & A. Soria-Frisch, 2011. Hierarchical segmentation-based software for cover classification analyses of seabed images (Seascape). Marine Ecology Progress Series 431: 45–53.CrossRefGoogle Scholar
  40. Trygonis, V. & M. Sini, 2012. photoQuad: A dedicated seabed image processing software, and a comparative error analysis of four photoquadrat methods. Journal of Experimental Marine Biology and Ecology 424–425: 99–108.CrossRefGoogle Scholar
  41. Vecchi, R., V. Bernardoni, C. Paganelli & G. Valli, 2014. A filter-based light absorption measurement with polar photometer: effects of sampling artefacts from organic carbon. Journal of Aerosol Science 70: 15–25.CrossRefGoogle Scholar
  42. Wang, L., W. P. Sousa & P. Gong, 2004. Integration of object-based and pixel-based classification for mapping mangroves with IKONOS imagery. International Journal of Remote Sensing 25: 5655–5668.CrossRefGoogle Scholar
  43. Wegge, N., 2011. Small state, maritime great power? Norway’s strategies for influencing the maritime policy of the European Union. Marine Policy 35: 335–342.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Aleksej Šaškov
    • 1
    Email author
  • Thomas G. Dahlgren
    • 2
  • Yuri Rzhanov
    • 3
  • Marie-Lise Schläppy
    • 4
  1. 1.Marine Science and Technology CenterKlaipėda UniversityKlaipėdaLithuania
  2. 2.Uni EnviromentUni ResearchBergenNorway
  3. 3.Center for Coastal and Ocean Mapping/Joint Hydrographic CenterUniversity of New HampshireDurhamUSA
  4. 4.Centre for Energy and Environment (CfEE)Environmental Research InstituteThursoScotland

Personalised recommendations