Advertisement

Hydrobiologia

, Volume 752, Issue 1, pp 203–221 | Cite as

Microbial pelagic metabolism and CDOM characterization in a phytoplankton-dominated versus a macrophyte-dominated shallow lake

  • A. Torremorell
  • G. Pérez
  • L. Lagomarsino
  • P. Huber
  • C. Queimaliños
  • J. Bustingorry
  • P. Fermani
  • M. E. Llames
  • F. UnreinEmail author
ARGENTINE PAMPEAN SHALLOW LAKES

Abstract

Dominant primary producer in macrophyte- or phytoplankton-dominated shallow lakes might imply differences in dissolved organic carbon (DOC) composition. We compared chromophoric dissolved organic matter (CDOM), plankton respiration (R), and bacterial (BP) and primary production (PP), in two contrasting shallow lakes. We hypothesized that DOC from the macrophyte-dominated lake would be qualitatively inferior, so that it can support a lower yield than DOC from the phytoplankton-dominated one. Macrophyte-dominated lake had more humic and aromatic CDOM, though molecular weight was similar in both lakes. A clear synchronism between lakes was observed in mean depth and several CDOM absorption coefficients, suggesting an external driver of the variation in DOC concentration and CDOM quality. The positive BP-PP and BP-Chl-a correlations in the macrophyte-dominated lake point out to a dependence of bacteria on phytoplankton for a supply of labile DOC. In turn, BP in the phytoplankton-dominated lake was balanced with grazing by HF (heterotrophic flagellates). The significantly higher HB:DOC and HF:DOC carbon ratios in the phytoplankton-dominated lake also suggest that better DOC quality would mean relatively more efficient C transfer to higher trophic levels. According to PP:BP and PP:R ratios both lakes should be considered autotrophic, although the macrophyte-dominated lake would be comparatively more heterotrophic.

Keywords

Alternative states Macrophytes Bacterial production 

Notes

Acknowledgment

This study was supported by the Argentine network for the assessment and monitoring of Pampean shallow lakes (PAMPA2—CONICET), ANPCyT (PICT-2011-1029), CONICET (PIP-01301), and UNSAM (SC08/043). We thank Roberto Escaray for field assistance and nitrogen estimations, Carla Passerini for the measurement of primary and bacterial productions, and Patricia Rodriguez for help with the scintillation counter.

Supplementary material

10750_2014_2057_MOESM1_ESM.pdf (67 kb)
Supplementary material 1 (PDF 66 kb)

References

  1. Aitkenhead-Peterson, J. A., W. H. McDowell, J. C. Neff, E. G. F. Stuart & S. L. Robert, 2003. Sources, production, and regulation of allochthonous dissolved organic matter inputs to surface waters. In Findlay, S. E. G. & R. L. Sinsabaugh (eds), Aquatic Ecosystems: Interactivity of Dissolved Organic Matter. Academic Press, San Diego: 71–91.Google Scholar
  2. Allende, L., G. Tell, H. Zagarese, A. Torremorell, G. Pérez, J. Bustingorry, R. Escaray & I. Izaguirre, 2009. Phytoplankton and primary production in clear-vegetated, inorganic-turbid, and algal-turbid shallow lakes from the pampa plain (Argentina). Hydrobiologia 624: 45–60.CrossRefGoogle Scholar
  3. Alonso-Sáez, L., J. Arístegui, J. Pinhassi, L. Gómez-Consarnau, J. M. Gonzá́lez, D. Vaqué, S. Agustí & J. M. Gasol, 2007. Bacterial assemblage structure and carbon metabolism along a productivity gradient in the NE Atlantic Ocean. Aquatic Microbial Ecology 46: 43–53.CrossRefGoogle Scholar
  4. Alonso-Sáez, L., E. Vázquez-Domínguez, C. Cardelús, J. Pinhassi, M. M. Sala, I. Lekunberri, V. Balagué, M. Vila-Costa, F. Unrein, R. Massana, R. Simó & J. M. Gasol, 2008. Factors controlling the year-round variability in carbon flux through bacteria in a coastal marine system. Ecosystems 11: 397–409.CrossRefGoogle Scholar
  5. Anderson, N. J. & C. A. Stedmon, 2007. The effect of evapoconcentration on dissolved organic carbon concentration and quality in lakes of SW Greenland. Freshwater Biology 52: 280–289.CrossRefGoogle Scholar
  6. APHA, 1998. Standard Methods for the Examination of Water and Wastewater, 20th ed. American Public Health Association, Washington, DC.Google Scholar
  7. Apple, J. K. & P. A. del Giorgio, 2007. Organic substrate quality as the link between bacterioplankton carbon demand and growth efficiency in a temperate salt-marsh estuary. The ISME Journal 1: 729–742.CrossRefPubMedGoogle Scholar
  8. Azam, F., T. Fenchel, J. G. Field & J. S. Gra, 1983. The ecological role of water-column microbes in the sea. Mar Ecol Prog Series 10: 257–263.CrossRefGoogle Scholar
  9. Baptista, I., A. L. Santos, A. Cunha, N. C. M. Gomes & A. Almeida, 2011. Bacteria biomass production in an estuarine system: high variability of leucine conversion factors and changes in bacterial community structure during incubation. Aquatic Microbial Ecology 62: 299–310.CrossRefGoogle Scholar
  10. Berggren, M., H. Laudon, M. Haei, L. Strom & M. Jansson, 2010a. Efficient aquatic bacterial metabolism of dissolved low-molecular-weight compounds from terrestrial sources. ISME J. 4: 408–416.CrossRefPubMedGoogle Scholar
  11. Berggren, M., L. Ström, H. Laudon, J. Karlsson, A. Jonsson, R. Giesler, et al., 2010b. Lake secondary production fueled by rapid transfer of low molecular weight organic carbon from terrestrial sources to aquatic consumers. Ecol. Lett. 13: 870–880.CrossRefPubMedGoogle Scholar
  12. Bertilsson, S. & J. B. Jones, 2003. Supply of dissolved organic matter to aquatic ecosystems: autochthonous sources. In Findlay, S. E. G. & R. L. Sinsabaugh (eds), Aquatic Ecosystems: Interactivity of Dissolved Organic Matter. Academic Press, San Diego: 3–24.CrossRefGoogle Scholar
  13. Billen, G., P. Servais & S. Becquevort, 1990. Dynamics of bacteriaplankton in oligotrophic and eutrophic aquatic environments: bottom-up or top-down control? Hydrobiologia 207: 37–42.CrossRefGoogle Scholar
  14. Bjornsen, P. K. & J. Kuparinen, 1991. Determination of bacterioplankton biomass, net production and growth efficiency in the Southern Ocean. Marine Ecology Progress Series 71: 185–194.CrossRefGoogle Scholar
  15. Børsheim, K. Y. & G. Bratbak, 1987. Cell volume to cell carbon conversion factors for a bacterivorous Monas sp. enriched from seawater. Marine Ecology Progress Series 36: 171–175.CrossRefGoogle Scholar
  16. Bouvy, M., R. Arfi, P. Cecchi, D. Corbin, M. Pagano, L. Saint-Jean & S. Thomas, 1998. Trophic coupling between bacterial and phytoplanktonic compartments in shallow tropical reservoirs (Ivory Coast, West Africa). Aquatic Microbial Ecology 15: 25–37.CrossRefGoogle Scholar
  17. Bracchini, L., A. Cózar, A. M. Dattilo, S. A. Loiselle, A. Tognazzi, N. Azza & C. Rossi, 2006. The role of wetlands in the chromophoric dissolved organic matter release and its relation to aquatic ecosystems optical properties. A case of study: Katonga and Bunjako Bays (Victoria Lake; Uganda). Chemosphere 63: 1170–1178.CrossRefPubMedGoogle Scholar
  18. Briand, E., O. Pringault, S. Jacquet & J.-P. Torreton, 2004. The use of oxygen microprobes to measure bacterial respiration for determining bacterioplankton growth efficiency. Limnology and Oceanography: Methods 2: 406–416.CrossRefGoogle Scholar
  19. Buesing, N. & J. Marxsen, 2005. Theoretical and empirical conversion factors for determining bacterial production in freshwater sediments via leucine incorporation. Limnology and Oceanography Methods 3: 101–107.CrossRefGoogle Scholar
  20. Calvo-Díaz, A. & X. A. G. Morán, 2009. Empirical leucine-to-carbon conversion factors for estimating heterotrophic bacterial production: seasonality and predictability in a temperate coastal ecosystem. Applied and Environmental Microbiology 75: 3216–3221.CrossRefPubMedCentralPubMedGoogle Scholar
  21. Carpenter, S. R., J. J. Cole, M. L. Pace, M. Van de Bogert, D. L. Bade, D. Bastviken, et al., 2005. Ecosystem subsidies: terrestrial support of aquatic food webs from 13C addition to contrasting lakes. Ecology 86: 2737–2750.CrossRefGoogle Scholar
  22. Chen, Y., N. Senesi & M. Schnitzer, 1977. Information provided on humic substances by E4:E6 ratios. Soil Science Society of America Journal 41: 352–358.CrossRefGoogle Scholar
  23. Cole, J. J., S. R. Carpenter, M. L. Pace, M. C. Van de Bogert, J. L. Kitchell & J. R. Hodgson, 2006. Differential support of lake food webs by three types of terrestrial organic carbon. Ecology Letters 9: 558–568.CrossRefPubMedGoogle Scholar
  24. Cole, J. J., S. R. Carpenter, J. Kitchell, M. L. Pace, C. T. Solomon & B. Weidel, 2011. Strong evidence for terrestrial support of zooplankton in small lakes based on stable isotopes of carbon, nitrogen, and hydrogen. Proceedings of the National Academy of Sciences of the USA 108: 1975–1980.CrossRefPubMedCentralPubMedGoogle Scholar
  25. Dangavs, N. V., 1976. Descripción sistemática de los parámetros morfométricos considerados en las lagunas pampásicas. Limnobios 1(2): 35–59.Google Scholar
  26. del Giorgio, P. A. & R. E. I. Newell, 2012. Phosphorus and DOC availability influence the partitioning between bacterioplankton production and respiration in tidal marsh ecosystems. Environmental Microbiology 14: 1296–1307.CrossRefPubMedGoogle Scholar
  27. Ducklow, H. W., 1992. Factors regulating bottom-up control of bacteria biomass in open ocean plankton communities. Archiv für Hydrobiologie 37: 207–217.Google Scholar
  28. Eiler, A., A. H. Farnleitner, T. C. Zechmeister, A. Herzig, C. Hurban, W. Wesner, R. Krachler, B. Velimirov & A. K. T. Kirschner, 2003. Factors controlling extremely productive heterotrophic bacterial communities in shallow soda pools. Microbial Ecology 46: 43–54.CrossRefPubMedGoogle Scholar
  29. Farjalla, V. F., B. M. Faria & F. A. Esteves, 2002. The relationship between DOC and planktonic bacteria in tropical coastal lagoons. Archiv für Hydrobiologie 156: 97–119.CrossRefGoogle Scholar
  30. Farjalla, V. F., A. M. Amado, A. L. Suhett & F. Meirelles-Pereira, 2009. DOC removal paradigms in highly humic aquatic ecosystems. Environmental Science and Pollution Research 16: 531–538.CrossRefPubMedGoogle Scholar
  31. Fermani, P., N. Diovisalvi, A. Torremorell, L. Lagomarsino, H. E. Zagarese & F. Unrein, 2013. The microbial food web structure of a hypertrophic warm-temperate shallow lake, as affected by contrasting zooplankton assemblages. Hydrobiologia 714: 115–130.CrossRefGoogle Scholar
  32. Fermani, P., A. Torremorell, L. Lagomarsino, R. Escaray, F. Unrein & G. Pérez, 2014. Microbial abundance patterns along a transparency gradient suggest a weak coupling between heterotrophic bacteria and flagellates in eutrophic shallow Pampean lakes. Hydrobiologia 1–21. Google Scholar
  33. Gao, G., B. Qin, R. Sommaruga & R. Psenner, 2007. The bacterioplankton of Lake Taihu, China: abundance, biomass, and production. Hydrobiologia 581: 177–188.CrossRefGoogle Scholar
  34. Geraldi, A. M., M. C. Piccolo & G. M. E. Perillo, 2011. El rol de las lagunas bonaerenses en el paisaje pampeano. Ciencia Hoy 21: 9–14.Google Scholar
  35. Guillemette, F., S. L. McCallister & P. A. del Giorgio, 2013. Differentiating the degradation dynamics of algal and terrestrial carbon within complex natural dissolved organic carbon in temperate lakes. Journal of Geophysical Research: Biogeosciences 118: 963–973.Google Scholar
  36. Helms, J. R., A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber & K. Mopper, 2008. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnology and Oceanography 53: 955–969.CrossRefGoogle Scholar
  37. Holm-Hansen, O. & E. W. Helbling, 1995. Técnicas para la medición de la productividad primaria en el fitoplancton. In Alveal, K., M. E. Ferrario, E. C. Oliveira & E. Sar (eds), Manual de Métodos Ficológicos. Universidad de Concepción, Concepción: 329–350.Google Scholar
  38. Huss, A. A. & J. D. Wehr, 2004. Strong indirect effects of a submersed aquatic macrophyte, Vallisneria americana, on bacterioplankton densities in a mesotrophic Lake. Microbial Ecology 47: 305–315.CrossRefPubMedGoogle Scholar
  39. Jansson, M., A. K. Bergström, P. Blomqvist & S. Drakare, 2000. Allochthonous organic carbon and phytoplankton/bacterioplankton production relationships in lakes. Ecology 81: 3250–3255.CrossRefGoogle Scholar
  40. Jørgensen, N. O. G., 1992. Incorporation of [3H]leucine and [3H]valine into protein of freshwater bacteria: uptake kinetics and intracellular isotope dilution. Applied and Environmental Microbiology 58: 3638–3646.PubMedCentralPubMedGoogle Scholar
  41. Kamjunke, N., W. Böing & H. Voigt, 1997. Bacterial and primary production under hypertrophic conditions. Aquatic Microbial Ecology 13: 29–35.CrossRefGoogle Scholar
  42. Kamjunke, N., C. Bohn & J. Grey, 2006. Utilisation of dissolved organic carbon from different sources by pelagic bacteria in an acidic mining lake. Archiv für Hydrobiologie 165: 355–364.CrossRefGoogle Scholar
  43. Karlsson, J., 2007. Different carbon support for respiration and secondary production in unproductive lakes. Oikos 116: 1691–1696.CrossRefGoogle Scholar
  44. Kemp, P. F., B. F. Sherr, B. E. Sherr & J. J. Cole, 1993. Handbook of methods in aquatic microbial ecology. Lewis Publishers, Boca Raton.Google Scholar
  45. Kirchman, D. L. & E. R. K’nees Hodson, 1985. Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic ecosystems. Applied and Environmental Microbiology 49: 599–607.PubMedCentralPubMedGoogle Scholar
  46. Kirk, J., 1994. Characteristics of the light field in highly turbid waters: a Monte Carlo study. Limnology and Oceanography 39: 702–706.CrossRefGoogle Scholar
  47. Kisand, V. T., T. Nõges & P. Zingel, 1998. Diel dynamics of bacterioplankton activity in eutrophic shallow Lake Võrtsjärv, Estonia. Hydrobiologia 380(1–3): 93–102.CrossRefGoogle Scholar
  48. Kranewitter, A. V., 2010. Estudio intensivo de la diná́mica temporal del picoplancton de la laguna Chascomú́s. B.Sc. Thesis, University of Buenos Aires, Argentina.Google Scholar
  49. Kritzberg, E., J. J. Cole, M. L. Pace, W. Granéli & D. L. Bade, 2004. Autochthonous versus allochthonous carbon sources of bacteria: Results from whole-lake 13C addition experiments. Limnology and Oceanography 49: 588–596.CrossRefGoogle Scholar
  50. Kritzberg, E. S., J. J. Cole, M. M. Pace & W. Granéli, 2005. Does autochthonous primary production drive variability in bacterial metabolism and growth efficiency in lakes dominated by terrestrial C inputs? Aquatic Microbial Ecology 38: 103–111.CrossRefGoogle Scholar
  51. Kritzberg, E. S., J. M. Arrieta & C. M. Duarte, 2010. Temperature and phosphorus regulating carbon flux through bacteria in a coastal marine system. Aquatic Microbial Ecology 58: 141–151.CrossRefGoogle Scholar
  52. Lauster, G. H., P. C. Hanson & T. K. Kratz, 2006. Gross primary production and respiration differences among littoral and pelagic habitats in northern Wisconsin lakes. Canadian Journal of Fisheries and Aquatic Sciences 63: 1130–1141.CrossRefGoogle Scholar
  53. Lemée, R., E. Rochelle-Newall, F. Van Wambeke, M.-D. Pizay, P. Rinaldi & J.-P. Gattuso, 2002. Seasonal variation of bacterial production respiration and growth efficiency in the open NW Mediterranean Sea. Aquatic Microbial Ecology 29: 227–237.CrossRefGoogle Scholar
  54. Loferer-Krößbacher, M., J. Klima & R. Psenner, 1998. Determination of bacterial cell dry mass by transmission electron microscopy and densitometric image analysis. Appl. Environ. Microbiol. 64: 688–694.PubMedCentralPubMedGoogle Scholar
  55. Marker, A. F. H., A. Nusch, H. Rai & B. Riemann, 1980. The measurement of photosynthetic pigments in freshwater and standardization of methods: conclusions and recommendations. Archiv für Hydrobiologie 14: 91–106.Google Scholar
  56. Massana, R., J. M. Gasol, P. K. Bjørnsen, N. Blackburn, Å. Hagstrøm, S. Hietanen, B. H. Hygum, J. Kuparinen & C. Pedrós Alió, 1997. Measurement of bacterial size via image analysis of epifluorescence preparations: description of an inexpensive system and solutions to some of the most common problems. Scientia Marina 61: 397–407.Google Scholar
  57. Menden-Deuer, S. & E. J. Lessard, 2000. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnology and Oceanography 45: 569–579.CrossRefGoogle Scholar
  58. Middelboe, M. & M. Søndergaard, 1993. Bacterioplankton growth yield: a close coupling to substrate lability and beta-glucosidase activity. Appl. Environ. Microbiol. 59: 3916–3921.PubMedCentralPubMedGoogle Scholar
  59. Moran, M. A. & R. E. Hodson, 1992. Contributions of three subsystems of a freshwater marsh to total bacterial secondary productivity. Microbial Ecology 24: 161–170.CrossRefPubMedGoogle Scholar
  60. Pace, M. L. & J. J. Cole, 2002. Synchronous variation of dissolved organic carbon and color in lakes. Limnology and Oceanography 47(2): 333–342.CrossRefGoogle Scholar
  61. Pace, M. L. & Y. Prairie, 2005. Respiration in lakes. In del Giorgio, P. A. & P Jle B Williams (eds), Respiration in Aquatic Ecosystems. Oxford University Press, New York: 123–131.Google Scholar
  62. Pérez, G. L., A. Torremorell, J. Bustingorry, R. Escaray, P. Pérez, M. Diéguez & H. Zagarese, 2010. Optical characteristics of shallow lakes from the Pampa and Patagonia regions of Argentina. Limnologica 40: 30–39.CrossRefGoogle Scholar
  63. Peuravouri, J. & K. Pihlaja, 1997. Molecular size distribution and spectroscopic properties of aquatic humic substances. Analytica Chimica Acta 337: 133–149.CrossRefGoogle Scholar
  64. Platt, T., C. L. Gallegos & W. G. Harrison, 1980. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. Journal of Marine Research 38: 687–701.Google Scholar
  65. Porter, K. G. & Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnology and Oceanography 25: 943–948.CrossRefGoogle Scholar
  66. Pulido-Villena, E. & I. Reche, 2003. Exploring bacterioplankton growth and protein synthesis to determine conversion factors across a gradient of dissolved organic matter. Microbial ecology 46: 33–42.CrossRefPubMedGoogle Scholar
  67. Rasmussen, J. B., L. Godbout & M. Schallenberg, 1989. The humic content of lake water and watershed and lake morphometry. Limnology and Oceanography 34: 1336–1343.CrossRefGoogle Scholar
  68. Rebsdorf, A., 1972. The Carbon Dioxide System of Freshwater. A Set of Tables for Easy Computation of Total Carbon Dioxide and Other Components of the Carbon Dioxide System. Freshwater Biological Laboratory, Hillerod.Google Scholar
  69. Reinthaler, T. & G. J. Herndl, 2005. Seasonal dynamics of bacterial growth efficiencies in relation to phytoplankton in the Southern North Sea. Aquatic Microbial Ecology 39: 7–16.CrossRefGoogle Scholar
  70. Reitner, B., A. Herzig & G. J. Herndl, 1999. Dynamics in bacterioplankton production in a shallow, temperate lake (Lake Neusiedl, Austria): evidence for dependence on macrophyte production rather than on phytoplankton. Aquatic Microbial Ecology 19: 245–254.CrossRefGoogle Scholar
  71. Robarts, R. D., M. T. Arts, M. S. Evans & M. J. Waiser, 1994. The coupling of heterotrophic bacterial in a hypertrophic, shallow prairie lake. Canadian Journal of Fisheries and Aquatic Sciences 51: 2219–2227.CrossRefGoogle Scholar
  72. Robarts, R. D., M. T. Arts, M. S. Evans & M. J. Waiser, 1999. The coupling of bacterial and phytoplankton production in Redberry Lake, Saskatchewan- an Oligotrophic, Prairie, Saline Lake with high DOC Concentration. Japanese Journal of Limnology 60: 11–27.CrossRefGoogle Scholar
  73. Rooney, N. & J. Kalff, 2003a. Submerged macrophyte-bed effects on water-column phosphorus, chlorophyll a, and bacterial production. Ecosystems 6: 797–807.CrossRefGoogle Scholar
  74. Rooney, N. & J. Kalff, 2003b. Interactions among epilimnetic phosphorus, phytoplankton biomass and bacterioplankton metabolism in lakes of varying submerged macrophyte cover. Hydrobiologia Springer 501: 75–81.CrossRefGoogle Scholar
  75. Scheffer, M., S. H. Hosper, M. L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology and Evolution 8: 275–279.CrossRefPubMedGoogle Scholar
  76. Sharp, J. H., 1993. Procedures subgroup report. Marine Chemistry 41: 37–49.CrossRefGoogle Scholar
  77. Sherry, N. D., B. Imanian, K. Sugimoto, P. W. Boyd & P. J. Harrison, 2002. Seasonal and interannual trends in heterotrophic bacterial processes between 1995 and 1999 in the subarctic NE Pacific. Deep-See Research II 49: 5775–5791.CrossRefGoogle Scholar
  78. Smith, D. C. & F. Azam, 1992. A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Marine Microbial Food Webs 6: 107–114.Google Scholar
  79. Smith, E. M. & Y. T. Prairie, 2004. Bacterial metabolism and growth efficiency in lakes: the importance of phosphorus availability. Limnol. Oceanogr. 49: 137–147.CrossRefGoogle Scholar
  80. Sommaruga, R., 1995. Microbial and classical food webs: a visit to a hypertrophic lake. FEMS microbiology ecology 17: 257–270.CrossRefGoogle Scholar
  81. Stanley, E. H., M. D. Johnson & A. K. Ward, 2003. Evaluating the influence of macrophytes on algal and bacterial production in multiple habitats of a freshwater wetland. Limnology and Oceanography 48: 1101–1111.CrossRefGoogle Scholar
  82. Steeman-Nielsen, E., 1952. The use of radiocarbon (14C) for measuring organic production in the sea. Journal du Conseil International pour l’Exploration de la Mer 18: 117–140.CrossRefGoogle Scholar
  83. Summers, R. S., P. K. Cornel & P. V. Roberts, 1987. Molecular size distribution and spectroscopic characterization of humic substances. Science of the Total Environment 62: 27–37.CrossRefGoogle Scholar
  84. They, N. H., D. Motta Marques, E. Jeppesen & M. Søndergaard, 2010. Bacterioplankton in the littoral and pelagic zones of subtropical shallow lakes. Hydrobiologia 646: 311–326.CrossRefGoogle Scholar
  85. Torremorell, A., J. Bustigorry, R. Escaray & H. E. Zagarese, 2007. Seasonal dynamics of a large, shallow lake, laguna Chascomús: the role of light limitation and other physical variables. Limnologica 37: 100–108.CrossRefGoogle Scholar
  86. Tranvik, L. J., 1998. Degradation of dissolved organic matter in humic waters by bacteria. In Hessen, D. O. & L. J. Tranvik (eds), Aquatic Humic Substances. Springer-Verlag, Berlin: 259–283.CrossRefGoogle Scholar
  87. Tulonen, T., 1993. Bacterial production in a mesohumic lake estimated from [14C] leucine incorporation rate. Microbial Ecology 26: 201–217.CrossRefPubMedGoogle Scholar
  88. Unrein, F., R. Massana, L. Alonso-Sáez & J. M. Gasol, 2007. Significant year-round effect of small mixotrophic flagellates on bacterioplankton in an oligotrophic coastal system. Limnology and Oceanography 52: 456–469.CrossRefGoogle Scholar
  89. Vaqué, D., J. M. Gasol & C. Marrasé, 1994. Grazing rates on bacteria: The significance of methodology and ecological factors. Marine Ecology Progress Series 109: 263–227.Google Scholar
  90. Waiser, M. J. & R. D. Robarts, 2004. Net heterotrophy in productive prairie wetlands with high DOC concentrations. Aquatic Microbial Ecology Inter-Research 34: 279–290.CrossRefGoogle Scholar
  91. Weishaar, J. L., G. R. Aiken, B. A. Bergamaschi, M. S. Fram, R. Fujii & K. Mopper, 2003. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environmental Science & Technology 37: 4702–4708.CrossRefGoogle Scholar
  92. Wetzel, R. G., 2001. Limnology: Lake and River Ecosystems, 3rd ed. Academic Press, New York.Google Scholar
  93. Worden, A. Z., J. K. Nolan & B. Palenik, 2004. Assessing the dynamics and ecology of marine picophytoplankton: the importance of the eukaryotic component. Limnology and oceanography 49: 168–179.CrossRefGoogle Scholar
  94. Zhang, Y., X. Liu, M. Wang & B. Qin, 2013. Compositional differences of chromophoric dissolved organic matter derived from phytoplankton and macrophytes. Organic Geochemistry 55: 26–37.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • A. Torremorell
    • 1
  • G. Pérez
    • 2
  • L. Lagomarsino
    • 3
  • P. Huber
    • 3
  • C. Queimaliños
    • 2
  • J. Bustingorry
    • 3
  • P. Fermani
    • 3
  • M. E. Llames
    • 3
  • F. Unrein
    • 3
    Email author
  1. 1.Departamento de Ciencias BásicasUniversidad Nacional de Luján (UNLu) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)(B6700ZBA) LujánArgentina
  2. 2.Instituto Investigaciones en Biodiversidad y Medio Ambiente (INIBIOMA)Universidad Nacional del Comahue (UNComa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)(R8400FRF) BarilocheArgentina
  3. 3.Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomus (IIB-INTECH)Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)(B7130IWA) ChascomúsArgentina

Personalised recommendations