Skip to main content

Advertisement

Log in

Ecological mechanisms of invasion success in aquatic macrophytes

  • INVASIVE SPECIES
  • Review Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Aquatic plants (macrophytes) are important components of freshwater ecosystems and serve numerous purposes that structure aquatic communities. Although macrophytes represent an essential component of stable aquatic communities, invasive macrophytes negatively alter ecosystem properties. Non-native, invasive species have been identified as a major cause of biodiversity loss and the increasing prevalence of invasive species has prompted studies to help understand their impacts and to conserve biodiversity. Studying mechanisms of invasion also give insight into how communities are structured and assembled. This paper examined mechanisms that contribute to macrophyte invasion through a literature review. Mechanisms identified with this review included competition, enemy release, evolution of increased competitive ability, mutualisms, invasional meltdown, novel weapons, allelopathy, phenotypic plasticity, naturalization of related species, empty niche, fluctuating resources, opportunity windows, and propagule pressure; and were then placed within the context of the invasion process. Results of this review indicated that many invasion mechanisms have been tested with fully aquatic macrophytes with varied levels of support (i.e., some mechanisms are not supported by evidence in the context of macrophyte invasions). Future research should continue the search for evidence of invasion mechanisms that allow introduced species to establish. It is likely that general principles governing these invasions do not exist, at least among comparisons across ecosystem types. However, ecologists should continue to search for general patterns within definable ecosystem units to increase understanding about factors contributing to invasibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ali, M. M. & M. A. Soltan, 2006. Expansion of Myriophyllum spicatum (Eurasian watermilfoil) into Lake Nasser, Egypt: invasive capacity and habitat stability. Aquatic Botany 84: 239–244.

    Google Scholar 

  • Angelstein, S., C. Wolfram, K. Rahn, U. Kiwel, S. Frimel, I. Merback & H. Schubert, 2009. The influence of different sediment nutrient contents on growth and competition of Elodea nuttallii and Myriophyllum spicatum in nutrient poor waters. Fundamental and Applied Limnology 175: 49–57.

    CAS  Google Scholar 

  • Barrat-Segretain, M. H. & B. Cellot, 2007. Response of invasive macrophyte species to drawdown: the case of Elodea spp. Aquatic Botany 87: 255–261.

    Google Scholar 

  • Blossey, B. & R. Notzold, 1995. Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis. Journal of Ecology 83: 887–889.

    Google Scholar 

  • Boedeltje, G., W. A. Ozinga & A. Prinzing, 2008. The trade-off between vegetative and generative reproduction among angiosperms influences regional hydrochorous propagule pressure. Global Ecology and Biogeography 17: 50–58.

    Google Scholar 

  • Boiche, A., P. Gierlinski & G. Thiebaut, 2010. Contrasting seasonal patterns in the acceptability of a naturalised and an introduced macrophyte for a generalist shredder. Fundamental and Applied Limnology 177: 133–141.

    Google Scholar 

  • Callaway, R. M. & E. T. Aschehoug, 2000. Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science 290: 521–523.

    CAS  PubMed  Google Scholar 

  • Carter, M. C. & M. D. Sytsma, 2001. Comparison of the genetic structure of North and South American populations of a clonal aquatic plant. Biological Invasions 3: 113–118.

    Google Scholar 

  • Cauletti, R. I., A. Ricciardi, I. A. Grigorovich & H. J. MacIsaac, 2004. Is invasion success explained by the enemy release hypothesis? Ecology Letters 7: 721–733.

    Google Scholar 

  • Chadwell, T. B. & A. M. Engelhardt, 2008. Effects of pre-existing submersed vegetation and propagule pressure on the invasion success of Hydrilla verticillata. Journal of Applied Ecology 45: 515–523.

    Google Scholar 

  • Cohen, J. N. Mirotchnick & B. Leung, 2007. Thousands introduced annually: the aquarium pathway for non-indigenous plants to the St. Lawrence Seaway. Frontiers in Ecology and the Environment 5: 528–532.

    Google Scholar 

  • Cronk, J. K. & M. S. Fennessy, 2001. Wetland Plants: Biology and Ecology. 2001. CRC Press, Boca Raton, Florida

  • Cuda, J. P., B. R. Coon, Y. M. Dao & T. D. Center, 2002. Biology and laboratory rearing of Cricotopus lebetis (Diptera: Chironomidae), a natural enemy of the aquatic weed Hydrilla (Hydrocharitaceae). Annals of the Entomological Society of America 95: 587–596.

    Google Scholar 

  • Cuda, J. P., R. Charudattan, M. J. Grodowitz, R. M. Newman, J. F. Shearer, M. L. Tamayo & B. Villegas, 2008. Recent advances in biological control of submersed aquatic weeds. Journal of Aquatic Plant Management 46: 15–32.

    Google Scholar 

  • Daehler, C. C., 2001. Darwin’s naturalization hypothesis revisited. The American Naturalist 158: 324–330.

    CAS  PubMed  Google Scholar 

  • Dandelot, S., C. Robles, N. Pech, A. Cazaubon & R. Verlaque, 2008. Allelopathic potential of two invasive alien Ludwigia spp. Aquatic Botany 88: 311–316.

    Google Scholar 

  • Darwin, C., 1859. On the Origin of Species by Means of Natural Selection. John Murray, London.

    Google Scholar 

  • Davis, M. A., J. P. Grime & K. Thompson, 2000. Fluctuating resources in plant communiites: a general theory of invasibility. Journal of Ecology 88: 528–534.

    Google Scholar 

  • di Nino, F., G. Thiebaut & S. Muller, 2007. Phenology and phenotypic variation of genetically uniform populations of Elodea nuttallii (Planch.) H. St. John at sites of different trophic states. Fundamental and Applied Limnology 168: 335–343.

    Google Scholar 

  • Ding, J. & B. Blossey, 2005. Impact of the native water lily leaf beetle Galerucella nymphaeae (Coleoptera: Chrysomelidae) attacking introduced water chestnut, Trapa natans in the northeastern United States. Environmental Entomology 34: 683–689.

    Google Scholar 

  • Doyle, R. D., M. D. Francis & R. M. Smart, 2003. Interference competition between Ludwigia repens and Hygrophila polysperma: two morphologically similar aquatic plant species. Aquatic Botany 77: 223–234.

    Google Scholar 

  • Doyle, R., M. Grodowitz, M. Smart & C. Owens, 2007. Separate and interactive effects of competition and herbivory on the growth, expansion, and tuber formation of Hydrilla verticillata. Biological Control 41: 327–338.

    Google Scholar 

  • Elton, C. S., 1958. The Ecology of Invasions by Animals and Plants. Methuen, London.

    Google Scholar 

  • Erhard, D. & E. M. Gross, 2006. Allelopathic activity of Elodea canadensis and Elodea nuttallii against epiphytes and phytoplankton. Aquatic Botany 85: 203–211.

    Google Scholar 

  • Ervin, G. N. & R. G. Wetzel, 2003. An ecological perspective of allelochemical interference in land–water interface communities. Plant and Soil 256: 13–28.

    CAS  Google Scholar 

  • Francescini, M. C., A. Poi de Neiff & M. E. Galassi, 2010. Is the biomass of water hyacinth lost through herbivory in native areas important? Aquatic Botany 92: 250–256.

    Google Scholar 

  • Garbey, C., G. Thiebaut & S. Muller, 2004. Morphological plasticity of a spreading aquatic macrophyte, Ranunculus peltatus, in response to environmental variables. Plant Ecology 173-125-137.

  • Geng, Y. P., X. Y. Pan, C. Y. Xu, W. J. Zhang, B. Li & J. K. Chen, 2006. Phenotypic plasticity of invasive Alternanthera philoxeroides in relation to different water availability, compared to its native congener. Acta Oecologica 30: 380–385.

    Google Scholar 

  • Geng, Y. P., X. Y. Pan, C. Y. Xu, W. J. Zhang, B. Li, J. K. Chen, B. R. Lu & Z. P. Song, 2007. Phenotypic plasticity rather than locally adapted ecotypes allows the invasive alligator weed to colonize a wide range of habitats. Biological Invasions 9: 245–256.

    Google Scholar 

  • Glomski, L. A. M., K. V. Wood, R. L. Nicholson & C. A. Lembi, 2002. The search for exudates from Eurasian watermilfoil and hydrilla. Journal of Aquatic Plant Management 40: 17–22.

    Google Scholar 

  • Gopal, B. & U. Goel, 1993. Competition and allelopathy in aquatic plant communities. The Botanical Review 59: 155–210.

    Google Scholar 

  • Grime, J. P., 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. American Naturalist 111: 1169–1194.

    Google Scholar 

  • Gross, E. M., 2003. Allelopathy of aquatic autotrophs. Critical Reviews in Plant Sciences 22: 313–339.

    Google Scholar 

  • Herb, W. R. & H. G. Stefan, 2006. Seasonal growth of submersed macrophytes in lakes: the effects of biomass density and light competition. Ecological Modeling 193: 560–574.

    Google Scholar 

  • Hilt, S. & E. M. Gross, 2008. Can allelopathically active submerged macrophytes stabilize clear-water states in shallow lakes? Basic and Applied Ecology 9: 422–432.

    Google Scholar 

  • Hofstra, D. E., J. Clayton, J. D. Green & M. Auger, 1999. Competitive performance of Hydrilla verticllata in New Zealand. Aquatic Botany 63: 305–324.

    Google Scholar 

  • Hussner, A., K. Van de Weyer, E. M. Gross & S. Hilt, 2010. Comments on increasing number and abundance of non-indigenous aquatic macrophyte species in Germany. Weed Research 50: 519–526.

    Google Scholar 

  • Jacobs, M. J. & H. J. MacIsaac, 2009. Modelling spread of the invasive macrophyte Cabomba caroliniana. Freshwater Biology 54: 296–305.

    Google Scholar 

  • James, C. S., J. W. Eaton & K. Hardwick, 1999. Competition between three submerged macrophytes, Elodea canadensis, Elodea nuttallii, and Lagarosiphon major. Hydrobiologia 415: 35–40.

    Google Scholar 

  • Johnson, L. E., A. Ricciardi & J. T. Carlton, 2001. Overland dispersal of aquatic invasive species: a risk assessment of transient recreational boating. Ecological Applications 11: 1789–1799.

    Google Scholar 

  • Johnstone, I. M., 1986. Plant invasion windows: a time-based classification of invasion potential. Biological Review 61: 369–394.

    Google Scholar 

  • Khanna, S., M. J. Santos, E. L. Hestir & S. L. Ustin, 2012. Plant community dynamics relative to the changing distribution of a highly invasive species, Eichornia crassipes: a remote sensing perspective. Biological Invasions 14: 717–733.

    Google Scholar 

  • Kolar, C. S. & D. M. Lodge, 2001. Progress in invasion biology: predicting invaders. Trends in Ecology and Evolution 16: 199–204.

    PubMed  Google Scholar 

  • Levine, J. M., 2000. Species diversity and biological invasions: relating local processes to community pattern. Science 288: 761–763.

    Google Scholar 

  • Lockwood, J. L., M. F. Hoopes & M. P. Marchetti, 2007. Invasion Ecology. Blackwell Publishing Ltd., Malden.

    Google Scholar 

  • Lockwood, J. L., P. Cassey & T. M. Blackburn, 2009. The more you see the more you get: the role of colonization pressure and propagule pressure in invasion ecology. Diversity and Distributions 15: 904–910.

    Google Scholar 

  • Lu, X. & J. Ding, 2012. History of exposure to herbivores increases the compensatory ability of an invasive plant. Biological Invasions 14: 649–658.

    Google Scholar 

  • MacIsaac, H. J., 1996. Potential abiotic and biotic impacts of zebra mussels on the inland waters of North America. American Zoologist 36: 287–299.

    Google Scholar 

  • Madsen, J. D., 1998. Predicting invasion success of Eurasian watermilfoil. Journal of Aquatic Plant Management 36: 28–32.

    Google Scholar 

  • Madsen, J. D. 2004. Invasive aquatic plants: a threat to Mississippi water resources. 2004 Proceedings, Mississippi Water Resources Conference, pp. 122–134.

  • Madsen, J. D., 2005. Eurasian Watermilfoil Invasions and Management across the United States. Currents: The Journal of Marine Education 21(2): 21–26.

    Google Scholar 

  • Madsen, J. D., J. W. Sutherland, J. A. Bloomfield, L. W. Eichler & C. W. Boylen, 1991. The decline of native vegetation under dense Eurasian watermilfoil canopies. Journal of Aquatic Plant Management 29: 94–99.

    Google Scholar 

  • Maezo, M. J., H. Fournier & B. E. Beisner, 2010. Potential and realized interactions between two aquatic invasive species: Eurasian watermilfoil (Myriophyllum spicatum) and rusty crayfish (Orconectes rusticus). Canadian Journal of Fisheries and Aquatic Sciences 67: 684–700.

    Google Scholar 

  • Marko, M. D., E. M. Gross, R. M. Newman & F. K. Gleason, 2008. Chemical profile of the North American native Myriophyllum sibiricum compared to the invasive M. spicatum. Aquatic Botany 88: 57–65.

    CAS  Google Scholar 

  • McCreary, N. J., 1991. Competition as a mechanism of submersed macrophyte community structure. Aquatic Botany 41: 177–193.

    Google Scholar 

  • McCullough, C. D., 1997. A review of the aquatic macrophyte family Hydrocharitaceae (Angiospermae) in New Zealand. Tane 36: 181–195.

    Google Scholar 

  • Michelan, T. S., S. M. Thomaz, R. P. Mormul & P. Carvalho, 2010. Effects of an exotic invasive macrophyte (tropical signalgrass) on native plant community composition, species richness and functional diversity. Freshwater Biology 55: 1315–1326.

    Google Scholar 

  • Mitchell, C. E., A. A. Agrawal, J. D. Bever, G. S. Gilbert, R. A. Hufbauer, J. N. Klironomos, J. L. Maron, W. F. Morris, I. M. Parker, A. G. Power, E. W. Seabloom, M. E. Torchin & D. P. Vazquez, 2006. Biotic interactions and plant invasions. Ecology Letters 9: 726–740.

    PubMed  Google Scholar 

  • Moen, R. A. & Y. Cohen, 1989. Growth and competition between Potamogeton pectinatus L. and Myriophyllum exalbescens fern. in experimental ecosystems. Aquatic Botany 33: 257–270.

    Google Scholar 

  • Mooney, H. A. & E. E. Cleland, 2001. The evolutionary impact of invasive species. Proceedings of the National Academy of Sciences of the United States of America 98: 5446–5451.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mormul, R. P., J. Ahlgren, M. K. Ekvall, L. Hansson & C. Bronmark, 2012. Water brownification may increase the invasibility of a submerged non-native macrophyte. Biological Invasions 14: 2091–2099.

    Google Scholar 

  • Morris, C., P. R. Grossl & C. A. Call, 2009. Elemental allelopathy: processes, progress, and pitfalls. Plant Ecology 202: 1–11.

    Google Scholar 

  • Morrison, W. E. & M. E. Hay, 2011. Herbivore preference for native vs. exotic plants: generalist herbivores from multiple continents prefer exotic plants that are evolutionarily naïve. PLoS ONE 6: 1–7.

    Google Scholar 

  • Nakai, S., Y. Inoue, M. Hosomi & A. Murakami, 1999. Growth inhibition of blue-green algae by allelopathic effects of macrophytes. Water Science and Technology 39: 47–53.

    Google Scholar 

  • Nakai, S., Y. Inoue, M. Hosomi & A. Murakami, 2000. Myriophyllum spicatum-released allelopathic polyphenols inhibiting growth of blue-green algae Microcystis aeruginosa. Water Research 34: 3026–3032.

    CAS  Google Scholar 

  • Netton, J. J. C., G. H. P. Arts, R. Gylstra, E. H. van Ness, M. Scheffer & R. M. M. Roijackers, 2010. Effect of temperature and nutrients on the competition between free-floating Salvinia natans and submerged Elodea nuttallii in mesocosms. Fundamental and Applied Limnology 177: 125–132.

    Google Scholar 

  • Olsen, M. H., G. G. Mittelbach & C. W. Osenberg, 1995. Competition between predator and prey: resource-based mechanisms and implications for stage-structured dynamics. Ecology 76: 1758–1771.

    Google Scholar 

  • Owens, C. S., R. M. Smart & G. O. Dick, 2008. Resistance of Vallisneria to invasion from hydrilla fragments. Journal of Aquatic Plant Management 46: 113–116.

    Google Scholar 

  • Pan, X., Y. Geng, W. Zhang, B. Li & J. Chen, 2006. The influence of abiotic stress and phenotypic plasticity on the distribution of invasive Alternanthera philoxeroides along a riparian zone. Acta Oecologica 30: 333–341.

    Google Scholar 

  • Parker, J. D. & M. E. Hay, 2005. Biotic resistance to plant invasions? Native herbivores prefer non-native plants. Ecology Letters 8: 959–967.

    Google Scholar 

  • Pimentel, D., R. Zuniga & D. Morrison, 2005. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological Economics 52: 273–288.

    Google Scholar 

  • Quinn, L. D., S. S. Schooler & R. D. Van Klinken, 2011. Effects of land use and environment on alien and native macrophytes: lesson from a large-scale survey of Australian rivers. Diversity and Distributions 17: 132–143.

    Google Scholar 

  • Reaser, J. K., L. A. Meyerson & B. Von Holle, 2008. Saving camels from straws: how propagule pressure-based prevention policies can reduce the risk of biological invasion. Biological Invasions 10: 1085–1098.

    Google Scholar 

  • Ren, M. X. & Q. G. Zhang, 2007. Clonal diversity and structure of the invasive aquatic plant Eichhornia crassipes in China. Aquatic Botany 87: 242–246.

    Google Scholar 

  • Ricciardi, A., 2001. Facilitative interactions among aquatic invaders: is an “invasional meltdown” occurring in the Great Lakes? Canadian Journal of Fisheries and Aquatic Sciences 58: 2513–2525.

    Google Scholar 

  • Ricciardi, A. & R. Kepp, 2008. Predicting the number of ecologically harmful exotic species in an aquatic system. Diversity and Distributions 14: 374–380.

    Google Scholar 

  • Richards, C. L., O. Bossdorf, N. Z. Muth, J. Gurevitch & M. Pigliucci, 2006. Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecology Letters 9: 981–993.

    PubMed  Google Scholar 

  • Richardson, D. M., N. Allsopp, C. M. D’Antonio, S. J. Milton & M. Rejmanek, 2000a. Plant invasions – the role of mutualisms. Biological Review 75: 65–93.

    CAS  Google Scholar 

  • Richardson, D. M., P. Pysek, M. Rejmanek, M. G. Barbour, F. D. Panetta & C. J. West, 2000b. Naturalization and invasion of alien plants: concepts and definitions. Diversity and Distributions 6: 93–107.

    Google Scholar 

  • Riis, T., B. Olesen, J. S. Clayton, C. Lambertini, H. Brix & B. K. Sorrell, 2012. Growth and morphology in relation to temperature and light availability during the establishment of three invasive aquatic plant species. Aquatic Botany 102: 56–64.

    Google Scholar 

  • Roberts, D. E., A. G. Church & S. P. Cummins, 1999. Invasion of Egeria into the Hawkesbury-Nepean River, Australia. Journal of Aquatic Plant Management 37: 31–34.

    Google Scholar 

  • Roley, S. S. & R. M. Newman, 2006. Developmental performance of the milfoil weevil, Euhrychiopsis lecontei (Coleoptera: Curculionidae), on northern watermilfoil, Eurasian watermilfoil, and hybrid (Northern × Eurasian) watermilfoil. Environmental Entomology 35: 121–126.

    Google Scholar 

  • Santos, M. J., L. W. Anderson & S. L. Ustin, 2011. Effects of invasive species on plant communities: an example using submersed aquatic plants at the regional scale. Biological Invasions 13: 443–457.

    Google Scholar 

  • Schultz, R. & E. Dibble, 2012. Effects of invasive macrophytes on freshwater fish and macroinvertebrate communities: the role of invasive plant traits. Hydrobiologia 684: 1–14.

    Google Scholar 

  • Simberloff, D. & B. Von Holle, 1999. Positive interactions of nonindigenous species: invasional meltdown? Biological Invasions 1: 21–32.

    Google Scholar 

  • Skubinna, J. P., T. G. Coon & T. R. Batterson, 1995. Increased abundance and depth of submersed macrophytes in response to decreased turbidity in Saginaw Bay, Lake Huron. Journal of Great Lakes Research 21: 476–488.

    Google Scholar 

  • Sousa, W. T. Z., S. M. Thomaz & K. J. Murphy, 2010. Response of native Egeria najas Planch. and invasive Hydrilla verticillata (L.f.) Royle to altered hydroecological regime in a subtropical river. Aquatic Botany 92: 40–48.

    Google Scholar 

  • Spencer, D. F. & M. Rejmanek, 1989. Propagule type influences competition between two submersed aquatic macrophytes. Oecologia 81: 132–137.

    Google Scholar 

  • Spierenburg, P., E. C. H. E. T. Lucassen, A. F. Lotter & J. G. M. Roelofs, 2009. Could rising aquatic carbon dioxide concentrations favour the invasion of elodeids in isoetid-dominated softwater lakes? Freshwater Biology 54: 1819–1831.

    CAS  Google Scholar 

  • Stiers, I., J. Njambuya & L. Triest, 2011. Competitive abilities of invasive Lagarosiphon major and native Ceratophyllum demersum in monocultures and mixed cultures in relation to experimental sediment dredging. Aquatic Botany 95: 161–166.

    Google Scholar 

  • Theel, H. J. & E. D. Dibble, 2008. An experimental simulation of an exotic aquatic macrophyte invasion and its influence on foraging behavior of bluegill. Journal of Freshwater Ecology. 23: 79–89.

    Google Scholar 

  • Thiebaut, G., 2005. Does competition for phosphate supply explain the invasion pattern of Elodea species? Water Research 39: 3385–3393.

    CAS  PubMed  Google Scholar 

  • Thomaz, S. M. & T. S. Michelan, 2011. Associations between a highly invasive species and native macrophytes differ across spatial scales. Biological Invasions 2011: 1881–1891.

    Google Scholar 

  • Thomaz, S. M., P. Carvalho, R. P. Mormul, F. A. Ferreira, M. J. Silveira & T. S. Michelan, 2009. Temporal trends and effects of diversity on occurrence of exotic macrophytes in a large reservoir. Acta Oecologica 25: 614–620.

    Google Scholar 

  • Titus, J. E. & M. S. Adams, 1979. Coexistence and the comparative light relations of the submersed macrophytes Myriophyllum spicatum L. and Vallisneria americana Michx. Oecologia 40: 273–286.

    Google Scholar 

  • Torchin, M. E. & C. E. Mitchell, 2004. Parasites, pathogens, and invasions by plants and animals. Frontiers in Ecology and the Environment 2: 183–190.

    Google Scholar 

  • Urban, R. A., J. E. Titus & W. X. Zhu, 2006. An invasive macrophyte alters sediment chemistry due to suppression of a native isoetid. Oecologia 148: 455–463.

    PubMed  Google Scholar 

  • Valley, R. D. & R. M. Newman, 1998. Competitive interactions between Eurasian watermilfoil and northern watermilfoil in experimental tanks. Journal of Aquatic Plant Management 36: 121–126.

    Google Scholar 

  • Van, T. K., G. S. Wheeler & T. D. Center, 1999. Competition between Hydrilla verticillata and Vallisneria americana as influenced by soil fertility. Aquatic Botany 62: 225–233.

    Google Scholar 

  • van Donk, E. & W. J. van de Bund, 2002. Impact of submerged macrophytes including charophytes on phyto-and zooplankton communities: allelopathy versus other mechanisms. Aquatic Botany 72: 261–274.

    Google Scholar 

  • Vitousek, P. M., H. A. Mooney, J. Lubchenco & J. M. Melillo, 1997. Human domination of earth’s ecosystems. Science 277: 494–499.

    CAS  Google Scholar 

  • Williamson, M., 1996. Biological Invasions. Chapman and Hall, London, UK.

    Google Scholar 

  • Wium-Anderson, S., U. Anthoni & G. Houen, 1983. Elemental sulphur, a possible allelopathic compound from Ceratophyllum demersum. Phytochemistry 22: 2613.

    Google Scholar 

  • Xie, D. & D. Yu, 2011. Size-related auto-fragment production and carbohydrate storage in auto-fragment of Myriophyllum spicatum L. in response to sediment nutrient and plant density. Hydrobiologia 658: 221–231.

    CAS  Google Scholar 

  • Xie, D., Y. Dan, Y. LingFei & L. ChunHua, 2010. Asexual propagations of introduced exotic macrophytes Elodea nuttallii, Myriophyllum aquaticum, and M. propinquum are improved by nutrient-rich sediments in China. Hydrobiologia 655: 37–47.

    Google Scholar 

  • Xiong, W., D. Yu, Q. Wang, C. Liu & L. Wang, 2008. A snail prefers native over exotic freshwater plants: implications for the enemy release hypotheses. Freshwater Biology 53: 2256–2263.

    Google Scholar 

  • Zhang, X. & Z. Liu, 2011. Interspecific competition effects on phosphorus accumulation by Hydrilla verticllata and Vallisneria natans. Journal of Environmental Sciences 23: 1274–1278.

    CAS  Google Scholar 

  • Zhang, Y. Y., D. Y. Zhang & S. C. H. Barrett, 2010. Genetic uniformity characterizes the invasive spread of water hyacinth (Eichornia crassipes), a clonal aquatic plant. Molecular Ecology 19: 1774–1786.

    CAS  PubMed  Google Scholar 

  • Zhu, B., D. G. Fitzgerald, C. M. Mayer, L. G. Rudstam & E. L. Mills, 2006. Alteration of ecosystem function by zebra mussels in Oneida Lake: impacts on submerged macrophytes. Ecosystems 9: 1017–1028.

    Google Scholar 

Download references

Acknowledgments

We would like to thank John Madsen, Gary Ervin, and Jerry Belant for reviewing earlier versions of this manuscript. We would also like to thank the anonymous reviewers who greatly helped to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan P. Fleming.

Additional information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fleming, J.P., Dibble, E.D. Ecological mechanisms of invasion success in aquatic macrophytes. Hydrobiologia 746, 23–37 (2015). https://doi.org/10.1007/s10750-014-2026-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-2026-y

Keywords

Navigation