Hydrobiologia

, Volume 743, Issue 1, pp 27–35 | Cite as

Temperature effects on body size of freshwater crustacean zooplankton from Greenland to the tropics

  • Karl E. Havens
  • Ricardo Motta Pinto-Coelho
  • Meryem Beklioğlu
  • Kirsten S. Christoffersen
  • Erik Jeppesen
  • Torben L. Lauridsen
  • Asit Mazumder
  • Ginette Méthot
  • Bernadette Pinel Alloul
  • U. Nihan Tavşanoğlu
  • Şeyda Erdoğan
  • Jacobus Vijverberg
Primary Research Paper

Abstract

The body size of zooplankton has many substantive effects on the function of aquatic food webs. A variety of factors may affect size, and earlier studies indicate that water temperature may be a particularly important variable. Here we tested the hypothesis that the body size of cladocerans, calanoids, and cyclopoids declines with increasing water temperature, a response documented in an earlier study that considered only cladoceran zooplankton. We tested the hypothesis by comparing body size data that were available from prior studies of lakes ranging from 6 to 74o latitude and encompassing a temperature range of 2–30°C. Cladoceran body size declined with temperature, in a marginally significant manner (P = 0.10). For cyclopoids, the decline was more significant (P = 0.05). In both cases, there was considerably more variation around the regression lines than previously observed; suggesting that other variables such as fish predation played a role in affecting size. Calanoid body size was unrelated to temperature. In contrast with cladocerans and cyclopoids, perhaps calanoid body size is not metabolically constrained by temperature or is differently affected by changes in fish predation occurring with increasing temperature. The unexpected result for calanoids requires further investigation.

Keywords

Zooplankton size Latitudinal patterns Global comparison 

Supplementary material

10750_2014_2000_MOESM1_ESM.docx (29 kb)
Supplementary material 1 (DOCX 29 kb)

References

  1. Adrian, R. & T. Frost, 1993. Omnivory in cyclopoid copepods: comparisons of algae and invertebrates as food for three, differently sized species. Journal of Plankton Research 15: 643–658.CrossRefGoogle Scholar
  2. Angilletta, M. J. & A. E. Dunham, 2003. The temperature-size rule in ectotherms: simple evolutionary explanations may not be general. The American Naturalist 162: 332–342.PubMedCrossRefGoogle Scholar
  3. Ashton, K. G., 2001. Are ecological and evolutionary rules being dismissed prematurely? Diversity and Distributions 7: 289–295.CrossRefGoogle Scholar
  4. Atkinson, D., 1994. Temperature and organism size – a biological law for ectotherms? Advances in Ecological Research 25: 1–58.CrossRefGoogle Scholar
  5. Brooks, J. L. & S. I. Dodson, 1965. Predation, body size, and composition of plankton. Science 150: 28–35.PubMedCrossRefGoogle Scholar
  6. Carpenter, S. R. & J. F. Kitchell, 1988. Consumer control of lake productivity. Bioscience 38: 764–769.CrossRefGoogle Scholar
  7. Crisman, T. L., 1992. Natural lakes of the southeastern United States: origin, structure and function. In Hackney, C. T., S. M. Adams & W. A. Martin (eds), Biodiversity of the South-Eastern United States: Aquatic Communities. Wiley, New York: 475–538.Google Scholar
  8. Daufresne, M., K. Lengfellner & U. Sommer, 2009. Global warming benefits the small in aquatic ecosystems. Proceedings of the National Academy of Sciences 106: 12788–12793.CrossRefGoogle Scholar
  9. Drenner, R. W. & S. R. McComas, 1984. The role of zooplankter escape ability and fish size selectivity in the selective feeding and impact of planktivorous fish. In Taub, F. B. (ed.), Lakes and Reservoirs, Ecosystems of the World. Elsevier, Amsterdam: 587–593.Google Scholar
  10. Dumont, H. J., I. Van de Velde & S. Dumont, 1975. The dry weight estimate on a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19: 75–97.CrossRefGoogle Scholar
  11. Escribano, R. & I. A. McLaren, 1992. Influence of food and temperature on lengths and weights of two marine copepods. Journal of Experimental Marine Biology and Ecology 19: 77–88.CrossRefGoogle Scholar
  12. Fernando, C. H., 1994. Zooplankton, fish and fisheries in tropical freshwaters. Hydrobiologia 272: 105–123.CrossRefGoogle Scholar
  13. Geiling, W. T. & R. S. Campbell, 1972. The effect of temperature on the development rate of the major life stages of Diaptomus pallidus Herrick. Limnology and Oceanography 17: 304–307.CrossRefGoogle Scholar
  14. Gélinas, M., B. Pinel-Alloul & M. Ślusarczyk, 2007. Formation of morphological defences in response to YOY perch and invertebrate predation in two Daphnia species coexisting in a mesotrophic lake. Hydrobiologia 594: 175–185.CrossRefGoogle Scholar
  15. Giguere, L. A., J. F. St Pierre, B. Bernier, A. Vezina & J. G. Rondeau, 2011. Can we estimate the true weight of zooplankton samples after chemical preservation? Canadian Journal of Fisheries and Aquatic Sciences 46: 522–527.CrossRefGoogle Scholar
  16. Gillooly, J. F., 2000. Effect of body size and temperature on generation time in zooplankton. Journal of Plankton Research 22: 241–251.CrossRefGoogle Scholar
  17. Gillooly, J. F. & S. I. Dodson, 2000. Latitudinal patterns in the size distribution and seasonal dynamics of new world, freshwater cladocerans. Limnology and Oceanography 45: 22–30.CrossRefGoogle Scholar
  18. Hart, R. C. & E. A. Bychek, 2011. Body size in freshwater planktonic crustaceans: an overview of extrinsic determinants and modifying influences of biotic interactions. Hydrobiologia 668: 61–108.CrossRefGoogle Scholar
  19. Havens, K. E., T. L. East, J. Marcus, P. Essex, B. Bolan, S. Raymond & J. R. Beaver, 1996. Dynamics of the exotic Daphnia lumholtzii and native macro-zooplankton in a subtropical chain-of-lakes in Florida, USA. Freshwater Biology 45: 21–32.CrossRefGoogle Scholar
  20. Hooff, R. C. & W. T. Peterson, 2006. Copepod biodiversity as an indicator of changes in ocean and climate conditions of the northern California current ecosystem. Limnology and Oceanography 51: 2607–2620.CrossRefGoogle Scholar
  21. Iglesias, C., N. Mazzeo, M. Meerhoff, G. Lacerot, J. M. Clemente, F. Scasso, C. Kruk, G. Goyenola, J. García-Alonso, S. L. Amsinck, J. C. Paggi, S. J. de Paggi & E. Jeppesen, 2011. High predation is of key importance for dominance of small-bodied zooplankton in warm shallow lakes: evidence from lakes, fish exclosures and surface sediments. Hydrobiologia 667: 133–147.CrossRefGoogle Scholar
  22. Jeppesen, E., T. L. Lauridsen, S. F. Mitchell & C. W. Burns, 1997. Do planktivorous fish structure the zooplankton communities in New Zealand lakes? New Zealand Journal of Marine and Freshwater Research 31: 163–173.CrossRefGoogle Scholar
  23. Jeppesen, E., J. P. Jensen, M. Söndergaard, T. Lauridsen & F. Landkildehus, 2000. Trophic structure, species richness and biodiversity in Danish lakes: changes along a phosphorus gradient. Freshwater Biology 45: 201–213.CrossRefGoogle Scholar
  24. Jeppesen, E., K. Christoffersen, F. Landkilehus, T. Lauridsen, S. L. Amsinck, F. Riget & M. Söndergaard, 2001. Fish and crustaceans in northeast Greenland lakes with special emphasis on interactions between Arctic charr (Salvelinus alpinus), Lepidurus arcticus and benthic chydorids. Hydrobiologia 442: 329–337.CrossRefGoogle Scholar
  25. Kainz, M., M. T. Arts & A. Mazumder, 2004. Essential fatty acids in the planktonic food web and their ecological role for higher trophic levels. Limnology and Oceanography 49: 1784–1793.CrossRefGoogle Scholar
  26. Lee, R. F., W. Hagen & G. Kattner, 2006. Lipid storage in marine zooplankton. Marine Ecology Progress Series 307: 273–306.CrossRefGoogle Scholar
  27. Lin, Y. K., A. R. Sastri, G. C. Gong & C. H. Hsieh, 2013. Copepod community growth rates in relation to body size, temperature, and food availability in the East China Sea: a test of metabolic theory of ecology. Biogeosciences 10: 1877–1892.CrossRefGoogle Scholar
  28. Lonsdale, D. J. & J. S. Levinton, 1985. Latitudinal differentiation in copepod growth: an adaptation to temperature. Ecology 66: 1397–1407.CrossRefGoogle Scholar
  29. Mazumder, A., 1994a. Phosphorus–chlorophyll relationships under contrasting herbivory and thermal stratification: predictions and patterns. Canadian Journal of Fisheries and Aquatic Sciences 51: 390–400.CrossRefGoogle Scholar
  30. Mazumder, A., 1994b. Phosphorus–chlorophyll relationships under contrasting zooplankton community structure: potential mechanisms. Canadian Journal of Fisheries and Aquatic Sciences 51: 401–407.CrossRefGoogle Scholar
  31. McCauley, E., 1984. The estimation of the abundance and biomass of zooplankton in samples. In Downing, J. A. & F. H. Rigler (eds), A Manual for the Assessment of Secondary Productivity in Fresh Waters. Blackwell Scientific, Oxford: 228–265.Google Scholar
  32. Meerhoff, M., F. Teixeira-de Mello, C. Kruk, C. Alonso, I. Gonzalez Bergonzoni, P. J. Pacheco, G. Lacerot, A. Matias, M. Beklioglu, S. B. Balmana, G. Goyenola, C. Iglesias, N. Mazzeo, S. Kosten & E. Jeppesen, 2012. Environmental warming in shallow lakes: a review of potential changes in community structure as evidenced from space-for-time substitution approaches. Advances in Ecological Research 46: 259–349.CrossRefGoogle Scholar
  33. Moore, M. V., C. F. Folt & R. S. Stemberger, 1996. Consequences of elevated temperatures for zooplankton assemblages in temperate lakes. Archiv für Hydrobiologie 135: 289–319.Google Scholar
  34. Pinto-Coelho, R., B. Pinel-Alloul, G. Methot & K. E. Havens, 2005. Crustacean zooplankton in lakes and reservoirs of temperate and tropical regions: variation with trophic status. Canadian Journal of Fisheries and Aquatic Sciences 62: 348–361.CrossRefGoogle Scholar
  35. Richman, S. & S. I. Dodson, 1983. The effect of food quality on feeding and respiration by Daphnia and Diaptomus. Limnology and Oceanography 28: 948–956.CrossRefGoogle Scholar
  36. Twombly, S. & N. Tisch, 2000. Body size regulation in copepod crustaceans. Oecologia 122: 318–326.CrossRefGoogle Scholar
  37. Vijverberg, J., E. Dejen, A. Getahun & L. A. J. Nagelkerke, 2014. Zooplankton, fish communities and the role of planktivory in nine Ethiopian lakes. Hydrobiologia 722: 45–60.CrossRefGoogle Scholar
  38. Zaret, T. M., 1980. Predation and Freshwater Communities. Yale University Press, New Haven, CT.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Karl E. Havens
    • 1
  • Ricardo Motta Pinto-Coelho
    • 2
  • Meryem Beklioğlu
    • 3
    • 4
  • Kirsten S. Christoffersen
    • 5
  • Erik Jeppesen
    • 6
    • 7
  • Torben L. Lauridsen
    • 6
    • 7
  • Asit Mazumder
    • 8
  • Ginette Méthot
    • 9
  • Bernadette Pinel Alloul
    • 9
  • U. Nihan Tavşanoğlu
    • 3
  • Şeyda Erdoğan
    • 3
  • Jacobus Vijverberg
    • 10
  1. 1.University of Florida and Florida Sea GrantGainesvilleUSA
  2. 2.Departamento de Biologia GeneralUniversidade Federal de Minas GeriasBelo HorizonteBrazil
  3. 3.Department of Biological SciencesMiddle East Technical UniversityAnkaraTurkey
  4. 4.Kemal Kurdaş Ecological Research and Training StationsLake Eymir, Middle East Technical UniversityAnkaraTurkey
  5. 5.Institute of BiologyUniversitetsparken 4CopenhagenDenmark
  6. 6.Department of Plant BiologyUniversity of AarhusRisskovDenmark
  7. 7.Sino-Danish Centre for Education and ResearchBeijingChina
  8. 8.Department of BiologyUniversity of VictoriaVictoriaCanada
  9. 9.Départment de Sciences biologiques, Groupe de Recherche Interuniversitaire en LimnologieUniversité de MontréalMontrealCanada
  10. 10.Netherlands Institute of EcologyWageningenThe Netherlands

Personalised recommendations