Skip to main content

Advertisement

Log in

Predicting the constraint effect of environmental characteristics on macroinvertebrate density and diversity using quantile regression mixed model

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Various factors, such as habitat availability, competition for space, predation, temperature, nutrient supplies, presence of waterfalls, flow variability and water quality, control the abundance, distribution and productivity of stream-dwelling organisms. Each of these factors can influence the response of the density of organisms to a specific environmental gradient, inflating variability and making difficult to understand the possible causal relationship. In our study, we used quantile regression mixed models and Akaike’s information criterion as an indicator of goodness to examine two different datasets, one belonging to Italy and one belonging to Finland, and to detect the limiting action of selected environmental variables. In the Italian dataset, we studied the relationships among five macroinvertebrate families and three physical habitat characteristics (water velocity, depth and substratum size); in the Finnish dataset the relationships between taxa richness and 16 environmental characteristics (chemical and physical). We found limiting relationships in both datasets and validated all of them on different datasets. These relationships are quantitative and can be used to predict the range of macroinvertebrate densities or taxa richness as a function of environmental characteristics. They can be a tool for management purposes, providing the basis for habitat-based models and for the development of ecological indices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen, D. C. & C. C. Vaughn, 2010. Complex hydraulic and substrate variables limit freshwater mussel species richness and abundance. Journal of the North American Benthological Society 29: 383–394.

    Article  Google Scholar 

  • Annala, M., H. Mykrä, M. Tolkkinen, T. Kauppila, & T. Muotka, in press. Are biological communities in naturally unproductive streams resistant to additional anthropogenic stressors? Ecological applications [http://www.esajournals.org/doi/abs/10.1890/13-2267.1].

  • AQEM Consortium, 2002. Manual for the application of the AQEM system, Version 1.0. “The Development and Testing of an Integrated Assessment System for the Ecological Quality of Streams and Rivers throughout Europe using Benthic Macroinvertebrates”.

  • Arthur, J. W., J. A. Zischke & G. L. Ericksen, 1982. Effect of elevated water temperature on macroinvertebrate communities in outdoor experimental channels. Water Research 16: 1465–1477.

    Article  Google Scholar 

  • Åström, M., E. K. Aaltonen & J. Koivusaari, 2001. Effect of ditching operations on stream-water chemistry in a boreal forested catchment. The Science of the total environment 279: 117–129.

    Article  PubMed  Google Scholar 

  • Austin, M., 2007. Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecological Modelling 200: 1–19.

    Article  Google Scholar 

  • Ayllón, D., A. Almodóvar, G. G. Nicola & B. Elvira, 2010. Modelling brown trout spatial requirements through physical habitat simulations. River Research and Applications 26: 1090–1102.

    Article  Google Scholar 

  • Bolker, B. M., M. E. Brooks, C. J. Clark, S. W. Geange, J. R. Poulsen, M. H. H. Stevens & J.-S. S. White, 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends in ecology & evolution 24: 127–135.

    Article  Google Scholar 

  • Burnham, K. P. & D. Anderson, 2002. Model Selection and Multi-Model Inference. Springer, New York.

    Google Scholar 

  • Cabrini, R., S. Canobbio, L. Sartori, R. Fornaroli & V. Mezzanotte, 2013. Leaf packs in impaired streams: the influence of leaf type and environmental gradients on breakdown rate and invertebrate assemblage composition. Water, Air, & Soil Pollution 224: 1697.

    Article  Google Scholar 

  • Cade, B. S. & B. Noon, 2003. A gentle introduction to quantile regression for ecologists. Frontiers in Ecology and the Environment 1: 412–420.

    Article  Google Scholar 

  • Cade, B. S., J. W. Terrell & R. L. Schroeder, 1999. Estimating effects of limiting factors with regression quantiles. Ecology 80: 311–323.

    Article  Google Scholar 

  • Calizza, E., M. L. Costantini, D. Rossi, P. Carlino & L. Rossi, 2012. Effects of disturbance on an urban river food web. Freshwater Biology 57: 2613–2628.

    Article  Google Scholar 

  • Campbell, R. E. & A. R. McIntosh, 2013. Do isolation and local habitat jointly limit the structure of stream invertebrate assemblages? Freshwater Biology 58: 128–141.

    Article  Google Scholar 

  • Canobbio, S., V. Mezzanotte, F. Benvenuto & M. Siotto, 2010. Determination of Serio River (Lombardy, Italy) ecosystem dynamics using macroinvertebrate functional traits. Italian Journal of Zoology 77: 227–240.

    Article  Google Scholar 

  • Canobbio, S., A. Azzellino, R. Cabrini & V. Mezzanotte, 2013. A multivariate approach to assess habitat integrity in urban streams using benthic macroinvertebrate metrics. Water Science and Technology 67: 2832–2837.

    Article  CAS  PubMed  Google Scholar 

  • Clarke, R. T., J. F. Wright & M. T. Furse, 2003. RIVPACS models for predicting the expected macroinvertebrate fauna and assessing the ecological quality of rivers. Ecological Modelling 160: 219–233.

    Article  Google Scholar 

  • Davies, J. & A. Boulton, 2009. Great house, poor food: effects of exotic leaf litter on shredder densities and caddisfly growth in 6 subtropical Australian streams. Journal of the North American Benthological Society 28: 491–503.

    Article  Google Scholar 

  • Doll, J. C., 2011. Predicting biological impairment from habitat assessments. Environmental monitoring and assessment 182: 259–277.

    Article  PubMed  Google Scholar 

  • Downes, B., 2010. Back to the future: little-used tools and principles of scientific inference can help disentangle effects of multiple stressors on freshwater ecosystems. Freshwater Biology 55: 60–79.

    Article  Google Scholar 

  • Fanny, C., A. Virginie, F. Jean-François, B. Jonathan, R. Marie-Claude & D. Simon, 2013. Benthic indicators of sediment quality associated with run-of-river reservoirs. Hydrobiologia 703: 149–164.

    Article  Google Scholar 

  • Folk, R. L., 1974. Petrology of Sedimentary Rocks. Hemphill Publishing, Austin.

    Google Scholar 

  • Geraci, M., 2014. Linear quantile mixed models: the lqmm package for Laplace quantile regression. Journal of Statistical Software 57: 1–29.

    Google Scholar 

  • Geraci, M. & M. Bottai, 2007. Quantile regression for longitudinal data using the asymmetric Laplace distribution. Biostatistics 8: 140–154.

    Article  PubMed  Google Scholar 

  • Geraci, M. & M. Bottai, 2014. Linear quantile mixed models. Statistics and Computing 24: 461–479.

    Article  Google Scholar 

  • Gordon, N. D., T. H. McMahon, B. L. Finlayson, C. J. Gippel & R. J. Nathan, 2004. Stream Hydrology. Wiley, Chichester.

    Google Scholar 

  • Gore, J. A., 1978. A technique for predicting in-stream flow requirements of benthic macroinvertebrates. Freshwater Biology 8: 141–151.

    Article  Google Scholar 

  • Gore, J. A., J. B. Layzer & J. Mead, 2001. Macroinvertebrate instream flow studies after 20 years: a role in stream management and restoration. Regulated Rivers: Research & Management 17: 527–542.

    Article  Google Scholar 

  • Gore, J., J. King & K. Hamman, 1991. Application of the instream flow incremental methodology to southern African rivers: protecting endemic fish of the Olifants River. Water SA 17: 225–236.

    Google Scholar 

  • Grueber, C. E., S. Nakagawa, R. J. Laws & I. G. Jamieson, 2011. Multimodel inference in ecology and evolution: challenges and solutions. Journal of evolutionary biology 24: 699–711.

    Article  CAS  PubMed  Google Scholar 

  • Hansen, J. & D. Hayes, 2012. Long-term implications of dam removal for macroinvertebrate communities in Michigan and Wisconsin Rivers, United States. River Research and Applications 28: 1540–1550.

    Article  Google Scholar 

  • Hart, D. D. & C. M. Finelli, 1999. Physical-biological coupling in streams: the pervasive effects of flow on benthic organisms. Annual Review of Ecology and Systematics 30: 363–395.

    Article  Google Scholar 

  • Hawkins, C. P., Y. Cao & B. Roper, 2010. Method of predicting reference condition biota affects the performance and interpretation of ecological indices. Freshwater Biology 55: 1066–1085.

    Article  Google Scholar 

  • Heino, J. & H. Mykrä, 2006. Assessing physical surrogates for biodiversity: do tributary and stream type classifications reflect macroinvertebrate assemblage diversity in running waters? Biological Conservation 129: 418–426.

    Article  Google Scholar 

  • Heino, J., T. Muotka & R. Paavola, 2003. Determinants of macroinvertebrate diversity in headwater streams: regional and local influences. Journal of Animal Ecology 72: 425–434.

    Article  Google Scholar 

  • Henning, K., H. Estrup & H. Schröder, 2005. Rejecting the mean: estimating the response of fen plant species to environmental factors by non-linear quantile regression. Journal of Vegetation Science 16: 373–382.

    Article  Google Scholar 

  • Holden, J., P. J. Chapman & J. C. Labadz, 2004. Artificial drainage of peatlands: hydrological and hydrochemical process and wetland restoration. Progress in Physical Geography 28: 95–123.

    Article  Google Scholar 

  • Johnson, J. B. & K. S. Omland, 2004. Model selection in ecology and evolution. Trends in ecology & evolution 19: 101–108.

    Article  Google Scholar 

  • Jowett, I. G., 1997. Instream flow methods: a comparison of approaches. Regulated Rivers: Research & Management 13: 115–127.

    Article  Google Scholar 

  • Kail, J., J. Arle & S. Jähnig, 2012. Limiting factors and thresholds for macroinvertebrate assemblages in European rivers: empirical evidence from three datasets on water quality, catchment urbanization, and river restoration. Ecological Indicators 18: 63–72.

    Article  CAS  Google Scholar 

  • Koenker, R., 2013. quantreg: quantile regression. R package version 4: 98.

    Google Scholar 

  • Koenker, R. & G. Bassett, 1978. Regression quantiles. Econometrica 46: 33–50.

    Article  Google Scholar 

  • Lacan, I., V. Resh & J. R. McBride, 2010. Similar breakdown rates and benthic macroinvertebrate assemblages on native and Eucalyptus globulus leaf litter in Californian streams. Freshwater Biology 55: 739–752.

    Article  CAS  Google Scholar 

  • Lancaster, J. & L. Belyea, 2006. Defining the limits to local density: alternative views of abundance–environment relationships. Freshwater Biology 51: 783–796.

    Article  Google Scholar 

  • Lancaster, J. & B. J. Downes, 2010. Linking the hydraulic world of individual organisms to ecological processes: putting ecology into ecohydraulics. River Research and Applications 26: 385–403.

    Article  Google Scholar 

  • Lessard, J. & D. Hayes, 2003. Effects of elevated water temperature on fish and macroinvertebrate communities below small dams. River research and applications 19: 721–732.

    Article  Google Scholar 

  • Lytle, D. & N. Poff, 2004. Adaptation to natural flow regimes. Trends in Ecology & Evolution 19: 94–100.

    Article  Google Scholar 

  • Maddock, I., 1999. The importance of physical habitat assessment for evaluating river health. Freshwater biology 41: 373–391.

    Article  Google Scholar 

  • Mäki-Petäys, A., T. Muotka, A. Huusko, P. Tikkanen & P. Kreivi, 1997. Seasonal changes in habitat use and preference by juvenile brown trout, Salmo trutta, in a northern boreal river. Canadian Journal of Fisheries and Aquatic Sciences 54: 520–530.

    Google Scholar 

  • Morrissey, C. A., A. Boldt, A. Mapstone, J. Newton & S. J. Ormerod, 2013. Stable isotopes as indicators of wastewater effects on the macroinvertebrates of urban rivers. Hydrobiologia 700: 231–244.

    Article  CAS  Google Scholar 

  • Ostermiller, J. & C. Hawkins, 2004. Effects of sampling error on bioassessments of stream ecosystems: application to RIVPACS-type models. Journal of the North American Benthological Society 23: 363–382.

    Article  Google Scholar 

  • Petrin, Z., 2011. Species traits predict assembly of mayfly and stonefly communities along pH gradients. Oecologia 167: 513–524.

    Article  PubMed  Google Scholar 

  • Petrin, Z., H. Laudon & B. Malmqvist, 2007a. Does freshwater macroinvertebrate diversity along a pH-gradient reflect adaptation to low pH? Freshwater Biology 52: 2172–2183.

    Article  CAS  Google Scholar 

  • Petrin, Z., B. McKie, I. Buffam, H. Laudon & B. Malmqvist, 2007b. Landscape-controlled chemistry variation affects communities and ecosystem function in headwater streams. Canadian Journal of Fisheries and Aquatic Sciences 64: 1563–1572.

    Article  Google Scholar 

  • Poff, N., J. Allan & M. Bain, 1997. The natural flow regime. BioScience 47: 769–784.

    Article  Google Scholar 

  • Power, M. E., R. J. Stout, C. E. Cushing, P. Harper, F. R. Hauer, W. J. Matthews, P. B. Moyle, B. Statzner & I. R. Wais De Bagden, 1988. Biotic and abiotic controls in river and stream communities. Journal of the North American Benthological Society 7: 456–479.

    Article  Google Scholar 

  • R Core Team, 2013. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Reid, D. J., J. M. Quinn & A. E. Wright-Stow, 2010. Responses of stream macroinvertebrate communities to progressive forest harvesting: influences of harvest intensity, stream size and riparian buffers. Forest Ecology and Management 260: 1804–1815.

    Article  Google Scholar 

  • Robinson, C. T., 2012. Long-term changes in community assembly, resistance, and resilience following experimental floods. Ecological Applications 22: 1949–1961.

    Article  PubMed  Google Scholar 

  • Rosenfeld, J. & R. Ptolemy, 2012. Modelling available habitat versus available energy flux: do PHABSIM applications that neglect prey abundance underestimate optimal flows for juvenile salmonids? Canadian Journal of Fisheries and Aquatic Sciences 69: 1920–1934.

    Article  Google Scholar 

  • Sandin, L. & R. K. Johnson, 2004. Local, landscape and regional factors structuring benthic macroinvertebrate assemblages in Swedish streams. Landscape Ecology 19: 501–514.

    Article  Google Scholar 

  • Schmidt, T. S., W. H. Clements & B. S. Cade, 2012. Estimating risks to aquatic life using quantile regression. Freshwater Science 31: 709–723.

    Article  Google Scholar 

  • Schooley, R. & J. Wiens, 2005. Spatial ecology of cactus bugs: area constraints and patch connectivity. Ecology 86: 1627–1639.

    Article  Google Scholar 

  • Statzner, B. & B. Higler, 1986. Stream hydraulics as a major determinant of benthic invertebrate zonation patterns. Freshwater Biology 16: 127–139.

    Article  Google Scholar 

  • Statzner, B., K. Hoppenhaus, M.-F. Arens & P. Richoux, 1997. Reproductive traits, habitat use and templet theory: a synthesis of world-wide data on aquatic insects. Freshwater Biology 38: 109–135.

    Article  Google Scholar 

  • Tachet, H., P. Richoux, M. Bournaud & P. Usseglio-Polatera, 2000. Invertébrés d’eau douce. CNRS Editions, Paris.

    Google Scholar 

  • Townsend, C. R., S. Dolédec & M. R. Scarsbrook, 1997. Species traits in relation to temporal and spatial heterogeneity in streams: a test of habitat templet theory. Freshwater Biology 37: 367–387.

    Article  Google Scholar 

  • Wagenhoff, A., C. R. Townsend & C. D. Matthaei, 2012. Macroinvertebrate responses along broad stressor gradients of deposited fine sediment and dissolved nutrients: a stream mesocosm experiment. Journal of Applied Ecology 49: 892–902.

    Article  CAS  Google Scholar 

  • Wright, J., 1995. Development and use of a system for predicting the macroinvertebrate fauna in flowing waters. Australian Journal of Ecology 20: 181–197.

    Article  Google Scholar 

  • Wright, J. F., 1992. Spatial and temporal occurrence of invertebrates in a chalk stream, Berkshire, England. Hydrobiologia 248: 11–30.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Anna Brusadelli for the help in macroinvertebrate identification and to Brian S. Cade for his helpful comments on an earlier version of the manuscript, in particular for the important tips about the use of quantile regression and AICc. We thank Timo Muotka and Heikki Mykrä for lending us their data. We also thank two anonymous referees for their constructive comments on a previous version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Fornaroli.

Additional information

Handling editor: Diego Fontaneto

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fornaroli, R., Cabrini, R., Sartori, L. et al. Predicting the constraint effect of environmental characteristics on macroinvertebrate density and diversity using quantile regression mixed model. Hydrobiologia 742, 153–167 (2015). https://doi.org/10.1007/s10750-014-1974-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-1974-6

Keywords

Navigation