Hydrobiologia

, Volume 740, Issue 1, pp 167–176

Phylogenetic and population genetic analysis of Thymallus thymallus (Actinopterygii, Salmonidae) from the middle Volga and upper Ural drainages

  • Saša Marić
  • Igor V. Askeyev
  • Oleg V. Askeyev
  • Sergey P. Monakhov
  • Jernej Bravničar
  • Aleš Snoj
Primary Research Paper

Abstract

The evolutionary relationship of grayling populations from the Kama and upper Ural drainage was studied, and the genetic diversity of the local populations was assessed. The complete mitochondrial DNA control region was sequenced and 12 microsatellite loci genotyped. Five previously undescribed closely related haplotypes (Caspian clade) were detected. The Caspian and previously reported Scandinavian clade formed a Caspio–Scandinavian group that was found to be the closest relative to the Balkan clade of European grayling. Based upon the molecular results, paleogeological information and a molecular clock of 0.5% change per million years, it appears the Caspio–Scandinavian group split some 0.6 million years ago (95% HPD = 0.33–0.92 mya), while the Balkan clade separated about 1 mya, in the Pleistocene. The sister relationship between Caspian and Scandinavian haplotypes implies that, at some time over that period, the Caspian basin might have been a corridor for dispersal connecting eastern and northern Europe. Microsatellite analysis revealed relatively large inter-population genetic differentiation among the Caspian sample set, pointing to genetically distinct populations that are deserving of special attention in terms of management and conservation.

Keywords

European grayling Caspian basin Phylogeography mtDNA Microsatellites Conservation 

Supplementary material

10750_2014_1951_MOESM1_ESM.jpg (3.7 mb)
A detailed map of the grayling extension along the whole river network shown in Fig. 1 (solid blue lines for known extension, dotted red line for presumed extension). Codes of sample site locations are reported in Table 1. (JPEG 3766 kb)
10750_2014_1951_MOESM2_ESM.doc (32 kb)
Estimated K values (number of genetic clusters) from STRUCTURE runs using the ΔK method. L(K), posterior probability of K; stdev, standard deviation of L(K) from seven independent runs; ΔK, an ad hoc quantity, predictor of the real number of clusters (Evanno et al., 2004), best ΔK is colored. (DOC 32 kb)
10750_2014_1951_MOESM3_ESM.doc (33 kb)
A synthesis of geographical plio-pleistocene history literature in Russian (references in bold are in Cyrillic). (DOC 33 kb)

References

  1. Abdrachmanov, R. F., V. I. Martin, V. G. Popov, A. P. Rozhdestvenski, A. I. Smirnov & A. I. Travkin, 2002. Karst of Bashkortostan. Informreklama, Ufa. (in Russian).Google Scholar
  2. Aladin, N. B. & I. S. Plotnikov, 2000. Danger of large-scale ecological catastrophe in the Caspian (The comparative analysis of causes and effects of ecological crises in the Aral and Caspian). The Caspian Bulletin 4: 112–126. (in Russian).Google Scholar
  3. Askeyev, O. V., I. V. Askeyev, S. P. Monahov, S. Marić, A. Snoj, N. M. Yanyabaev, A. O. Askeyev & D. N. Galimova, 2013. Historical and current distribution of the four species and forms of Salmoniformes in the territory of the Volga and Ural basin. In Askeyev, V. I., V. O. Askeyev, V. Dmitry & V. Ivanov (eds), Proceedings of the Third Russian Scientific Conference on the Dynamics of Modern Ecosystems in the Holocene. Otechestvo, Kazan: 15–23. (in Russian).Google Scholar
  4. Askeyev, A., S. Monakhov, I. Askeyev & O. Askeyev, 2014. Rare and endangered fish species distribution in relation to environmental gradients, Tatartstan republic, Russia. In Ivanov, V. (ed.), Proceeding of Scientific Works of Institute of Problems Ecology and Mineral Wealth. Tatarstan Academy of Sciences, Otechestvo, Kazan: 3–15. (in Russian).Google Scholar
  5. Berg, L. S., 1948. Freshwater fishes of the USSR and adjacent countries. Part 1, 4th ed. USSR Academy of Sciences, Moscow & Leningrad. (in Russian).Google Scholar
  6. Chibilev, A. A., 1993. Rare species of fishes of the Orenburg region and their conservation. Nauka, Ekaterinburg. (in Russian).Google Scholar
  7. Clement, M., D. Posada & K. Crandall, 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology 9: 1657–1660.PubMedCrossRefGoogle Scholar
  8. Drummond, A. J., M. A. Suchard, D. Xie & A. Rambaut, 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29(8): 1969–1973.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Evanno, G., S. Regnaut & J. Goudet, 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14: 2611–2620.PubMedCrossRefGoogle Scholar
  10. Froufe, E., I. Knizhin, M. T. Koskinen, C. R. Primmer & S. Weiss, 2003. Identification of reproductively isolated lineages of Amur grayling (Thymallus grubii Dybowski 1869): concordance between phenotypic and genetic variation. Molecular Ecology 12: 2345–2355.PubMedCrossRefGoogle Scholar
  11. Gibbard, P. & T. van Kolfschoten, 2004. The pleistocene and holocene epochs. In Gradstein, F. M., J. G. Ogg & A. G. Smith (eds), A Geologic Time Scale. Cambridge University Press, Cambridge. ISBN ISBN 0521781426: 441–452.Google Scholar
  12. Gorecky, G. I., 1966. Formation of Volga River Valley in the Early and Middle Quaternary. Nauka Press, Moscow. (in Russian).Google Scholar
  13. Gum, B., R. Gross & R. Kuehn, 2005. Mitochondrial and nuclear DNA phylogeography of European grayling (Thymallus thymallus): evidence for secondary contact zones in central Europe. Molecular Ecology 14: 1707–1725.PubMedCrossRefGoogle Scholar
  14. Gum, B., R. Gross & J. Geist, 2009. Conservation genetics and management implications for European grayling, Thymallus thymallus: synthesis of phylogeography and population genetics. Fisheries Management and Ecology 16: 37–51.CrossRefGoogle Scholar
  15. Hasegawa, M., H. Kishino & T. Jano, 1985. Dating of the human–ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22: 160–174.PubMedCrossRefGoogle Scholar
  16. Koskinen, M. T., E. Ranta, J. Piironen, A. Veselov, S. Titov, T. O. Haugen, J. Nilsson, M. Carlstein & C. R. Primmer, 2000. Genetic lineages and postglacial colonization of grayling (Thymallus thymallus, Salmonidae) in Europe, as revealed by mitochondrial DNA analyses. Molecular Ecology 9: 1609–1624.PubMedCrossRefGoogle Scholar
  17. Kvasov, D. D., 1975. Late Quaternary History of Large Lakes and Inland Seas of Eastern Europe. Nauka Press, Lenningrad. (in Russian).Google Scholar
  18. Librado, P. & J. Rozas, 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452.PubMedCrossRefGoogle Scholar
  19. Marić, S., A. Razpet, V. Nikolić & P. Simonović, 2011. Genetic differentiation of European grayling (Thymallus thymallus) populations in Serbia, based on mitochondrial and nuclear DNA analyses. Genetics Selection Evolution 43: 2.CrossRefGoogle Scholar
  20. Marić, S., B. Kalamujić, A. Snoj, A. Razpet, L. Lukić-Bilela, N. Pojskić & S. Sušnik Bajec, 2012. Genetic variation of European grayling (Thymallus thymallus) populations in the Western Balkans. Hydrobiologia 691: 225–237.CrossRefGoogle Scholar
  21. Meraner, A. & A. Gandolfi, 2012. Phylogeography of European grayling, Thymallus thymallus (Actinopterygii, Salmonidae), within the Northern Adriatic basin: evidence for native and exotic mitochondrial DNA lineages. Hydrobiologia 693(1): 205–221.CrossRefGoogle Scholar
  22. Obedientova, G. V., 1975. Formation of river systems of Russian Plain. Nedra, Moscow. (in Russian).Google Scholar
  23. Ozhiganov, D. G., 1964. Bashkir ASSR and Orenburg Region. Part 1. In Ozhiganov, D. G. (ed.), Geology of the USSR. Nedra, Moscow: 656 pp. [The geological description, vol XIII]. (in Russian).Google Scholar
  24. Penck, A. & E. Brückner, 1909. Die Alpen im Eiszeitalter. Taunitz, Leipzig: 1199 pp.Google Scholar
  25. Posada, D., 2008. jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 1253–1256.PubMedCrossRefGoogle Scholar
  26. Shaposhnikova, G. H., 1964. Biology and Distribution of Fish in Ural Type of Rivers. Nauka Press, Moscow. (in Russian).Google Scholar
  27. Stadler, T., 2009. On incomplete sampling under birth-death models and connections to the sampling-based coalescent. Journal of Theoretical Biology 261(1): 58–66.PubMedCrossRefGoogle Scholar
  28. Starobogatov, Y. I., 1970. Fauna of Molluscs and Zoogeographical Division of Continental Waters of the World. Academy of Sciences of USSR, Institute of Zoology, Leningrad. (in Russian).Google Scholar
  29. Sušnik, S., P. Berrebi, P. Dovč, M. M. Hansen & A. Snoj, 2004. Genetic introgression between wild and stocked salmonids and the prospects for using molecular markers in population rehabilitation: the case of the Adriatic grayling (Thymallus thymallus L. 1785). Heredity 93: 273–282.PubMedCrossRefGoogle Scholar
  30. Svetovidov, A. N., 1936. Graylings (genus Thymallus, Cuvier) of Europe and Asia. Proceedings of Institute of Zoology Academy of Sciences USSR 3: 183–301. (in Russian).Google Scholar
  31. Swatdipong, A., A. Vasemägi, M. T. Koskinen, P. Piironen & C. R. Primmer, 2009. Unanticipated population structure of European grayling in its northern distribution: implications for conservation prioritization. Frontiers in Zoology 6: 6.PubMedCrossRefPubMedCentralGoogle Scholar
  32. The Red Book of the Orenburg region, 1998. (Animals and Plants.). Orenburg Publishing House, Orenburg. (in Russian).Google Scholar
  33. The Red Book of the Republic of Bashkortostan, 2004. Part 3. (Animals.). Kitap, Ufa. (in Russian).Google Scholar
  34. The Red Book of the Republic of Tatarstan, 2006. (Animals, Plants, Fungi.) 2nd edn. Idel-Press, Kazan. (in Russian).Google Scholar
  35. The Red Data Book of Russian Federation, 2001. (Animals.). AST-Astrel Publishers, Moscow. (in Russian).Google Scholar
  36. Uiblein, F., A. Jagsch, W. Honsig-Erlenburg & S. Weiss, 2001. Status, habitat use, and vulnerability of the European grayling in Austrian waters. Journal of Fish Biology 59: 223–247.Google Scholar
  37. Van Oosterhout, C., W. F. D. Hutchinson, P. M. Wills & P. Shipley, 2004. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4: 535–538.CrossRefGoogle Scholar
  38. Weiss, S., H. Persat, R. Eppe, C. Schlötterer & F. Uiblein, 2002. Complex patterns of colonization and refugia revealed for European grayling Thymallus thymallus, based on complete sequencing of the mitochondrial DNA control region. Molecular Ecology 11: 1393–1407.PubMedCrossRefGoogle Scholar
  39. Yakhimovich, V. L., V. K. Nemkova, A. V. Sydnev, F. I. Suleimanova, G. A. Khabibullina, T. I. Sherbakova & A. G. Yakovlev, 1987. The Pleistocene of the Fore-Urals. Nauka Press, Moscow. (in Russian).Google Scholar
  40. Zinoviev, E., 1969. Characteristics of feeding of grayling in different water types in Kama River basin. In Biology of Fish in Middle Kama basin, Vol. 195. Proceedings of Perm State University: 83–93. (in Russian).Google Scholar
  41. Zinoviev, E., 2008. Ecological standards of river and streams morphotypes of grayling Thymallus thymallus (Linnaeus, 1758) in Kama basin. In Biology and Ecology of Fishes in Kama Region. Between Universities Proceeding of Scientific Work, Vol. 2. Perm: 32–40. (in Russian).Google Scholar
  42. Zinoviev, E., 2005. Ecotypes of grayling fish (Thymallidae, Salmoniformes). Russian Journal of Ecology 5: 385–389. (in Russian).Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Saša Marić
    • 1
  • Igor V. Askeyev
    • 2
  • Oleg V. Askeyev
    • 2
  • Sergey P. Monakhov
    • 2
  • Jernej Bravničar
    • 3
  • Aleš Snoj
    • 3
  1. 1.Institute of Zoology, Faculty of BiologyUniversity of BelgradeBelgradeSerbia
  2. 2.Institute for Problems of Ecology and Mineral WealthTatarstan Academy of SciencesKazanRussian Federation
  3. 3.Department of Animal Science, Biotechnical FacultyUniversity of LjubljanaDomžaleSlovenia

Personalised recommendations