Skip to main content

Advertisement

Log in

Phytoplankton richness is related to nutrient availability, not to pool size, in a subarctic rock pool system

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In small aquatic ecosystems, communities are strongly affected by environmental filtering such as disturbances and fine-scale heterogeneity of physicochemical properties. Aim of this study was to examine the effects of abiotic variables on phytoplankton richness in 30 subarctic rock pools in Finnish Lapland and further to test species–area and productivity–diversity relationships. We used Moran’s correlograms to examine if phytoplankton richness and explanatory variables show spatial autocorrelation. We then related phytoplankton richness to physical, chemical and spatial variables (derived from Principal Coordinates of Neighbor Matrices based on either overland or water course distances) using generalized linear model (GLM). Correlograms did not indicate clear gradient-like spatial structures in the data. According to the best-approximating GLM, phytoplankton richness showed a highly significant positive relationship with total P concentrations, which differed by one magnitude among the pools, and showed also a marginally significant negative relationship with conductivity. Richness scaled nonsignificantly with pool volume. We conclude that rock pools with higher nutrient availability are capable of supporting more phytoplankton species in this low-energy ecosystem. We did not find any support for the species–area relationship across the pools possibly because the pools were similarly affected by random disturbances irrespective of their volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arrhenius, O., 1921. Species and area. Journal of Ecology 9: 95–99.

    Article  Google Scholar 

  • Burnham, K. P. & D. R. Anderson, 2002. Model Selection and Inference: A Practical Information-Theoretic Approach. Springer, New York.

    Google Scholar 

  • Cardinale, B. J., H. Hillebrand, W. S. Harpole, K. Gross & R. Ptacnik, 2009. Separating the influence of resource ‘availability’ from resource ‘imbalance’ on productivity–diversity relationships. Ecology Letters 12: 475–487.

    Article  PubMed  Google Scholar 

  • Chase, J. & M. Leibold, 2002. Spatial scale dictates the productivity-biodiversity relationship. Nature 416: 427–430.

    Article  PubMed  CAS  Google Scholar 

  • De Meester, L., S. Declerck, R. Stoks, G. Louette, F. Van De Meutter, T. De Bie, E. Michels & L. Brendonck, 2005. Ponds and pools as model systems in conservation biology, ecology and evolutionary biology. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 715–725.

    Article  Google Scholar 

  • Drakare, S., J. Lennon & H. Hillebrand, 2006. The imprint of the geographical, evolutionary and ecological context on species-area relationships. Ecology Letters 9: 215–227.

    Article  PubMed  Google Scholar 

  • Dray, S., P. Legendre & P. R. Peres-Neto, 2006. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling 196: 483–493.

    Article  Google Scholar 

  • Giraudoux, P. 2011. pgirmess: Data analysis in ecology. R package version 1.5.2. http://CRAN.R-project.org/package=pgirmess.

  • Heino, J., L. M. Bini, S. M. Karjalainen, H. Mykra, J. Soininen, L. C. Galli Vieira & J. A. Felizola Diniz-Filho, 2010. Geographical patterns of micro-organismal community structure: are diatoms ubiquitously distributed across boreal streams? Oikos 119: 129–137.

    Article  Google Scholar 

  • Horner-Devine, M., M. Lage, J. Hughes & B. Bohannan, 2004. A taxa-area relationship for bacteria. Nature 432: 750–753.

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson, G. E., 1961. The paradox of the plankton. American Naturalist 95: 137–145.

    Article  Google Scholar 

  • Jocque, M., B. Vanschoenwinkel & L. U. C. Brendonck, 2010. Freshwater rock pools: a review of habitat characteristics, faunal diversity and conservation value. Freshwater Biology 55: 1587–1602.

    Google Scholar 

  • John, D., B. Whitton & A. Brook, 2002. The Freshwater Algae Flora of the British Isles. Cambridge University Press, Cambridge.

    Google Scholar 

  • Korhonen, J. J., J. Wang & J. Soininen, 2011. Productivity-diversity relationships in lake plankton communities. PLoS ONE 6: e22041.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Landeiro, V. L., W. E. Magnusson, A. S. Melo, H. M. V. Espírito-Santo & L. M. Bini, 2011. Spatial eigenfunction analyses in stream networks: do watercourse and overland distances produce different results? Freshwater Biology 56: 1184–1192.

    Article  Google Scholar 

  • Langenheder, S., M. Berga, Ö. Östman & A. J. Székely, 2012. Temporal variation of β-diversity and assembly mechanisms in a bacterial metacommunity. ISME Journal 6: 1107–1114.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Legendre, P. & L. Legendre, 1998. Numerical Ecology. Elsevier, Amsterdam.

    Google Scholar 

  • Lepère, C., I. Domaizon, N. Taib, J.-F. Mangot, G. Bronner, D. Boucher & D. Debroas, 2013. Geographic distance and ecosystem size determine the distribution of smallest protists in lacustrine ecosystems. FEMS Microbiology Ecology 85: 85–94.

    Article  PubMed  Google Scholar 

  • Martins, G. M., S. J. Hawkins, R. C. Thompson & S. R. Jenkins, 2007. Community structure and functioning in intertidal rock pools: effects of pool size and shore height at different successional stages. Marine Ecology Progress Series 329: 43–55.

    Article  Google Scholar 

  • Mittelbach, G. G., C. F. Steiner, S. M. Schneiner, K. L. Gross, H. L. Reynolds, R. B. Waide, M. R. Willig, S. I. Dodson & L. Gough, 2001. What is the observed relationship between species richness and productivity? Ecology 82: 2381–2396.

    Article  Google Scholar 

  • Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. O’hara, G. L. Simpson, P. Solymos, M. Stevens & H. Wagner, 2011. vegan: Community Ecology Package. R Package Version 2.0-2. R Project for Statistical Computing, Vienna.

    Google Scholar 

  • Pajunen, V. & I. Pajunen, 2003. Long-term dynamics in rock pool Daphnia metapopulations. Ecography 26: 731–738.

    Article  Google Scholar 

  • Poff, N., 1997. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. Journal of the North American Benthological Society 16: 391–409.

    Article  Google Scholar 

  • Ptacnik, R., T. Andersen, P. Brettum, L. Lepisto & E. Willen, 2010. Regional species pools control community saturation in lake phytoplankton. Proceedings of the Royal Society B 277: 3755–3764.

    Article  PubMed  PubMed Central  Google Scholar 

  • R Development Core Team, 2011. The R project for statistical computing. Version 2.15.2. R Foundation for Statistical Computing, Vienna [available on internet at http://www.r-project.org/].

  • Reche, I., E. Pulido-Villena, R. Morales-Baquero & E. Casamayor, 2005. Does ecosystem size determine aquatic bacterial richness? Ecology 86: 1715–1722.

    Article  Google Scholar 

  • Reynolds, C. S., 2006. Ecology of Phytoplankton. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Ricklefs, R. E., 1987. Community diversity: relative roles of local and regional processes. Science 235: 167–171.

    Article  PubMed  CAS  Google Scholar 

  • Rosenzweig, M. L., 1995. Species Diversity in Space and Time. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Smith, V. H., B. L. Foster, J. P. Grover, R. D. Holt, M. A. Leibold & F. deNoyelles Jr, 2005. Phytoplankton species richness scales consistently from laboratory microcosms to the world’s oceans. Proceedings of the National Academy of Sciences of the United States of America 102: 4393–4396.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Smol, J. P. & M. S. V. Douglas, 2007. Crossing the final ecological threshold in high Arctic ponds. Proceedings of the National Academy os Sciences of the United States of America 104: 12395–12397.

    Article  CAS  Google Scholar 

  • Soininen, J. & M. Luoto, 2012. Is catchment productivity a useful predictor of taxa richness in lake plankton communities? Ecological Applications 22: 624–633.

    Article  PubMed  Google Scholar 

  • Spencer, M., S. S. Schwartz & B. Leon, 2002. Are there fine-scale spatial patterns in community similarity among temporary freshwater pools? Global Ecology and Biogeography 11: 71–78.

    Article  Google Scholar 

  • Srivastava, D. S., J. Kolasa, J. Bengtsson, A. Gonzalez, S. P. Lawler, T. E. Miller, P. Munguia, T. Romanuk, D. C. Schneider & M. K. Trzcinski, 2004. Are natural microcosms useful model systems for ecology? Trends in Ecology & Evolution 19: 379–384.

    Article  Google Scholar 

  • Stomp, M., J. Huisman, G. G. Mittelbach, E. Litchman & C. A. Klausmeier, 2011. Large-scale biodiversity patterns in freshwater phytoplankton. Ecology 92: 2096–2107.

    Article  PubMed  Google Scholar 

  • Tikkanen, T. 1986. Kasviplanktonopas. (Phytoplankton Guide). Helsinki: 278 pp. (In Finnish).

  • Urban, M. C., 2004. Disturbance heterogeneity determines freshwater metacommunity structure. Ecology 85: 2971–2978.

    Article  Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen. Internationale Vereiningung fuer Theoretische und Angewandte Limnologie 9: 1–38.

  • Vanschoenwinkel, B., C. De Vries, M. Seaman & L. Brendonck, 2007. The role of metacommunity processes in shaping invertebrate rock pool communities along a dispersal gradient. Oikos 116: 1255–1266.

    Article  Google Scholar 

  • Vanschoenwinkel, B., A. Waterkeyn, M. Jocqué, L. Boven, M. Seaman & L. Brendonck, 2010. Species sorting in space and time-the impact of disturbance regime on community assembly in a temporary pool metacommunity. Journal of the North American Benthological Society 29: 1267–1278.

    Article  Google Scholar 

  • Vanschoenwinkel, B., F. Buschke & L. Brendonck, 2013. Disturbance regime alters the impact of dispersal on alpha and beta diversity in a natural metacommunity. Ecology 94: 2547–2557.

    Article  PubMed  Google Scholar 

  • Venables, W. N. & B. D. Ripley, 2002. Modern Applied Statistics with S, 4th ed. Springer, New York.

    Book  Google Scholar 

  • Von Berg, K.-H.L., K. Hoef-Emden & M. Melkonian, 2004. Der Kosmos-Algenführer. Kosmos.

  • Waide, R. B., M. R. Willig, C. F. Steiner, G. Mittelbach, L. Gough, S. I. Dodson, G. P. Juday & R. Parmenter, 1999. The relationship between productivity and species richness. Annual Review in Ecology, Evolution and Systematics 30: 257–300.

    Article  Google Scholar 

  • Wetzel, R. G., 2001. Limnology. Academic Press, San Diego.

    Google Scholar 

  • Wright, D. H., 1983. Species-energy theory: an extension of species-area theory. Oikos 41: 496–506.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Academy of Finland (Grant nr. 263880 to JS) for the financial support and two anonymous reviewers for their constructive comments on the earlier draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janne Soininen.

Additional information

Handling editor: Boping Han

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soininen, J., Meier, S. Phytoplankton richness is related to nutrient availability, not to pool size, in a subarctic rock pool system. Hydrobiologia 740, 137–145 (2014). https://doi.org/10.1007/s10750-014-1949-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-1949-7

Keywords

Navigation