Skip to main content
Log in

Historical frequency of wind dispersal events and role of topography in the dispersal of anostracan cysts in a semi-arid environment

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Propagules of several freshwater invertebrates are passively dispersed by wind, but the importance of wind as a dispersal vector remains poorly understood. We examined the historical frequency of wind dispersal events in cysts of Artemia franciscana. A threshold wind speed of ~5 km/h was required to begin dispersing surface-resting cysts, beyond which cyst dispersal increased rapidly with increasing wind speed. The analysis of wind speed and cyst dispersal data from our field experiment and wind data for the last 45 years from a nearby airport revealed that wind events strong enough to disperse most cysts at a wind-exposed site are common, occurring on ~16 snow-free days per year and occurring consistently over long time periods. In a topographically uneven landscape, however, wind speeds vary substantially from one location to another; wind speeds at our exposed site were 69% higher than in a nearby wind-sheltered depression. Accordingly, winds strong enough to disperse most cysts from this sheltered site occurred on only 5 days of the 45 year period. Cysts are thus less likely to disperse from, and more likely to settle in, sheltered depressions than wind-exposed areas. Sheltered areas could thus function as traps for wind-dispersing propagules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Banha, F. & P. M. Anastácio, 2012. Waterbird-mediated passive dispersal of river shrimp Atyaephyra desmaresti. Hydrobiologia 694: 197–204.

    Article  Google Scholar 

  • Bilton, D. T., J. R. Freeland & B. Okamura, 2001. Dispersal in freshwater invertebrates. Annual Review of Ecology and Systematics 32: 159–181.

    Article  Google Scholar 

  • Bohonak, A. J. & D. G. Jenkins, 2003. Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecology Letters 6: 783–796.

    Article  Google Scholar 

  • Brendock, L. & B. J. Riddoch, 1999. Wind-borne short-range egg dispersal in anostracans (Crustacea: Branchiopoda). Biological Journal of the Linnean Society 67: 87–95.

    Article  Google Scholar 

  • Brochet, A. L., M. Gauthier-Clerc, M. Guillermain, H. Fritz, A. Waterkeyn, Á. Baltanás & A. J. Green, 2010. Field evidence of dispersal of branchiopods, ostracods and bryozoans by teal (Anas crecca) in the Camargue (southern France). Hydrobiologia 637: 255–261.

    Article  Google Scholar 

  • Cáceres, C. E. & D. A. Soluk, 2002. Blowing in the wind: a field test of overland dispersal and colonization by aquatic invertebrates. Oecologia 131: 402–408.

    Article  Google Scholar 

  • Clegg, J. S., S. A. Jackson & V. I. Popov, 2000. Long-term anoxia in encysted embryos of the crustacean, Artemia franciscana: viability, ultrastructure, and stress proteins. Cell and Tissue Research 301: 433–446.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, G. M. & J. B. Shurin, 2003. Scale-dependence and mechanisms of dispersal in freshwater zooplankton. Oikos 103: 603–617.

    Article  Google Scholar 

  • Craghan, M., 2003. Physical Geography: A Self-Teaching Guide. Wiley, Hoboken.

    Google Scholar 

  • Frisch, D., A. J. Green & J. Figuerola, 2007. High dispersal capacity of a broad spectrum of aquatic invertebrates via waterbirds. Aquatic Sciences 69: 569–574.

    Article  Google Scholar 

  • Green, A. J. & J. Figuerola, 2005. Recent advances in the study of long-distance dispersal of aquatic invertebrates via birds. Diversity and Distributions 11: 149–156.

    Article  Google Scholar 

  • Government of Canada, 2012. Historical climate data. http://climate.weather.gc.ca/. Accessed 18 May 2012.

  • Hairston, N. G. J., R. A. Van Brunt, C. M. Kearns & D. R. Engstrom, 1995. Age and survivorship of diapausing eggs in a sediment egg bank. Ecology 76: 1706–1711.

    Article  Google Scholar 

  • Hammer, U. T. & L. Forro, 1992. Zooplankton distribution and abundance in saline lakes of British Columbia, Canada. International Journal of Salt Lake Research 1: 65–80.

    Article  Google Scholar 

  • Havel, J. E. & J. B. Shurin, 2004. Mechanisms, effects, and scales of dispersal in freshwater zooplankton. Limnology and Oceanography 49: 1229–1238.

    Article  Google Scholar 

  • Hou, L., H. Y. Li, X. Y. Zou & X. D. B. C. B. He, 2006. Population genetic structure and genetic differentiation of Artemia parthenogenetica in China. Journal of Shellfish Research 25: 999–1005.

    Google Scholar 

  • Howeth, J. G. & M. A. Leibold, 2010. Species dispersal rates alter diversity and ecosystem stability in pond metacommunities. Ecology 91: 2727–2741.

    Article  PubMed  Google Scholar 

  • Hulsmans, A., K. Moreau, L. De Meester, B. J. Riddoch & L. Brendonck, 2007. Direct and indirect measures of dispersal in the fairy shrimp Branchipodopsis wolfi indicate a small-scale isolation-by-distance pattern. Limnology and Oceanography 52: 676–684.

    Article  Google Scholar 

  • Jenkins, D. G. & M. O. Underwood, 1998. Zooplankton may not disperse readily in wind, rain, or waterfowl. Hydrobiologia 387(388): 15–21.

    Article  Google Scholar 

  • Lehmitz, R., D. Russell, K. Hohberg, A. Christian & W. Xylander, 2011. Wind dispersal of oribatid mites as a mode of migration. Pedobiologia 54: 201–207.

    Article  Google Scholar 

  • Lundgren, D. A. & H. J. Paulus, 1975. The mass distribution of large atmospheric particles. Journal of the Air Pollution Control Association 25: 1227–1231.

    Article  Google Scholar 

  • Muñoz, J., F. Amat, A. J. Green, J. Figuerola & A. Gómez, 2013. Bird migratory flyways influence the phylogeography of the invasive brine shrimp Artemia franciscana in its native American range. PeerJ 1: e200.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nathan, R., N. Sapir, A. Trakhtenbrot, G. Katul, G. Bohrer, M. Otte, R. Avissar, M. B. Soons, H. S. Horn, M. Wikelski & S. A. Levin, 2005. Long-distance biological transport processes through the air: can nature’s complexity be unfolded in silico? Diversity and Distributions 11: 131–137.

    Article  Google Scholar 

  • Sánchez, M. I., F. Hortas, J. Figuerola & A. J. Green, 2012. Comparing the potential for dispersal via waterbirds of a native and an invasive brine shrimp. Freshwater Biology 57: 1896–1903.

    Article  Google Scholar 

  • Steiner, C. F., R. D. Stockwell, V. Kalaimani & Z. Aqel, 2011. Dispersal promotes compensatory dynamics and stability in forced metacommunities. American Naturalist 178: 159–170.

    Article  PubMed  Google Scholar 

  • Vanschoenwinkel, B., S. Gielen, M. Seaman & L. Brendonck, 2008a. Any way the wind blows – frequent wind dispersal drives species sorting in ephemeral aquatic communities. Oikos 117: 125–134.

    Article  Google Scholar 

  • Vanschoenwinkel, B., S. Gielen, H. Vandewaerde, M. Seaman & L. Brendonck, 2008b. Relative importance of different dispersal vectors for small aquatic invertebrates in a rock pool metacommunity. Ecography 31: 567–577.

    Article  Google Scholar 

  • Vanschoenwinkel, B., S. Gielen, M. Seaman & L. Brendonck, 2009. Wind mediated dispersal of freshwater invertebrates in a rock pool metacommunity: differences in dispersal capacities and modes. Hydrobiologia 635: 363–372.

    Article  Google Scholar 

  • Vanschoenwinkel, B., A. Waterkeyn, T. Nhiwatiwa, T. Pinceel, E. Spooren, A. Geerts, B. Clegg & L. Brendonck, 2011. Passive external transport of freshwater invertebrates by elephant and other mud-wallowing mammals in an African savannah habitat. Freshwater Biology 56: 1606–1619.

    Article  Google Scholar 

  • Vogt, R. J. & B. E. Beisner, 2011. Assessing the impact of dispersal on zooplankton community structure. Journal of Plankton Research 33: 1757–1761.

    Article  Google Scholar 

  • Warner, A. H. & J. S. Clegg, 2001. Diguanosine nucleotide metabolism and the survival of Artemia embryos during years of continuous anoxia. European Journal of Biochemistry 268: 1568–1576.

    Article  PubMed  CAS  Google Scholar 

  • Zar, J. H., 2010. Biostatistical analysis, 5th ed. Prentice Hall, Englewood Cliffs.

    Google Scholar 

Download references

Acknowledgments

We wish to thank A. Parekh, D. Parekh, J. Parekh, S. Parekh, and G. Bloudell for providing support with field work for this project. Also thanks to M. Reudink for helpful comments on an earlier version of the manuscript. This project was conducted in compliance with the research ethics requirements of the Animal Care Committee of Thompson Rivers University, and was supported by a research grant from the Natural Sciences and Engineering Research Council of Canada to LAG.

Disclaimer

Hydrobiologia distances itself from the field methods used in the present paper, as such methods have the potential to introduce an alien Evolutionary Significant Unit (ESU) into a study area, and discourages such methods in future studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis A. Gosselin.

Additional information

Handling editor: John M. Melack

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parekh, P.A., Paetkau, M.J. & Gosselin, L.A. Historical frequency of wind dispersal events and role of topography in the dispersal of anostracan cysts in a semi-arid environment. Hydrobiologia 740, 51–59 (2014). https://doi.org/10.1007/s10750-014-1936-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-1936-z

Keywords

Navigation