Advertisement

Hydrobiologia

, Volume 748, Issue 1, pp 133–143 | Cite as

Habitat complexity predicts the community diversity of rock-dwelling cichlid fish in Lake Malawi, East Africa

  • Baoqing Ding
  • Jason Curole
  • Martin Husemann
  • Patrick D. Danley
ADVANCES IN CICHLID RESEARCH

Abstract

Understanding the factors that regulate species diversity remains an important goal in ecology, conservation and evolutionary biology. Speciose communities, like the cichlid fishes in the East African Great Lakes, offer useful opportunities to examine these factors. For example, Lake Malawi supports well over 700 cichlid fish species which likely descended from a common ancestor within the past 2–4 million years. One consequence of this remarkable radiation is the high species diversity of Lake Malawi’s cichlid communities. However, the factors facilitating the assembly and maintenance of species rich cichlid communities have yet to be fully identified. In this study, we examine the diversity of Lake Malawi’s rock-dwelling cichlid communities and investigate the roles that several environmental variables have played in maintaining such high diversity. We surveyed 82 quadrats spanning seven sites and observed 54 species from 12 genera. Most environmental variables that we measured varied significantly within, but did not differ significantly among sampled sites, suggesting that habitat heterogeneity is locally high, but at the lake-wide scale habitats are uniformly heterogeneous. Community diversity was strongly influenced by habitat complexity, while community similarity was strongly dependent on the geographical distance between communities. At the genus level, no relationship between geographic distance and community similarity was found, but community composition was also determined by habitat complexity. Our findings demonstrate that habitat complexity predicts both cichlid species diversity and functional diversity, whereas geographic separation determines the similarities among communities at the species but not at the generic level.

Keywords

Cichlids Community ecology Lake Malawi Rugosity Species richness 

Notes

Acknowledgments

We are grateful to Dr. Ryan King for help with the experimental design. We want to thank Richard Zatha and Aimee Howe for their help with field work. We are grateful to Lake Malawi National Park, the Malawi Fisheries Department, and the University of Malawi—Chancellor College for their assistance in collecting this data set. Darrell Vodopich, Martin Genner, and two anonymous reviewers provided valuable comments on this manuscript. This research was funded by a Jordan Grant of the American Cichlid Association and a Glasscock Award to M. H., Folmar Awards to B. D. and M. H. and additional funding of the Department of Biology, Baylor University to P. D. D.

Supplementary material

10750_2014_1932_MOESM1_ESM.xls (54 kb)
Appendix 1. Mbuna species list for the sampled quadrats across seven sites in Lake Malawi (XLS 54 kb)
10750_2014_1932_MOESM2_ESM.doc (388 kb)
Supplemental Fig. 1 A pairwise comparison among different environmental variables, most of the comparisons showed little or no significant correlation except for water depth and secchi distance, salinity and conductivity, water temperature and the distance to the lake shore and depth (DOC 388 kb)
10750_2014_1932_MOESM3_ESM.doc (232 kb)
Supplemental Fig. 2 Cluster analysis of cichlid communities from different sampling sites in Lake Malawi. Boadzulu (bd), Otter Point (ot), Chiofu Bay (cf), Nakatenga Island (nt), Thumbi West Island (tm), Maleri Island (ma), Nkhata Bay (nb) (DOC 232 kb)
10750_2014_1932_MOESM4_ESM.doc (78 kb)
Supplemental Fig. 3 The summary of the indicator value analysis predicting the highest indicator value for the grouping of three clusters (DOC 78 kb)

References

  1. Albertson, R. C., 2008. Morphological divergence predicts habitat partitioning in a Lake Malawi cichlid species complex. Copeia 2008: 689–698.CrossRefGoogle Scholar
  2. Albertson, R. C., J. A. Markert, P. D. Danley & T. D. Kocher, 1999. Phylogeny of a rapidly evolving clade: the cichlid fishes of Lake Malawi, East Africa. Proceedings of the National Academy of Sciences 96: 5107–5110.CrossRefGoogle Scholar
  3. Arnegard, M. E., J. A. Markert, P. D. Danley, J. R. Stauffer, A. J. Ambali & T. D. Kocher, 1999. Population structure and colour variation of the cichlid fishes Labeotropheus fuelleborni Ahl along a recently formed archipelago of rocky habitat patches in southern Lake Malawi. Proceedings of the Royal Society of London. Series B: Biological Sciences 266: 119–130.CrossRefPubMedCentralGoogle Scholar
  4. Astorga, A., J. Oksanen, M. Luoto, J. Soininen, R. Virtanen & T. Muotka, 2012. Distance decay of similarity in freshwater communities: do macro- and microorganisms follow the same rules? Global Ecology and Biogeography 21: 365–375.CrossRefGoogle Scholar
  5. August, P. V., 1983. The role of habitat complexity and heterogeneity in structuring tropical mammal communities. Ecology 64: 1495–1507.CrossRefGoogle Scholar
  6. Brian, G. & R. S. Martin, 2005. Effects of habitat complexity on Caribbean marine fish assemblages. Marine Ecology Progress Series 292: 301–310.CrossRefGoogle Scholar
  7. Chambers, J. M., 2008. Software for data analysis: programming with R. Springer, New York.CrossRefGoogle Scholar
  8. Cunha, E., T. Michelan, K. Kovalenko & S. Thomaz, 2012. Flying over water: how “On bird species diversity” influenced aquatic ecology. Hydrobiologia 685: 19–26.CrossRefGoogle Scholar
  9. D’cruze, N. & S. Kumar, 2011. Effects of anthropogenic activities on lizard communities in northern Madagascar. Animal Conservation 14: 542–552.CrossRefGoogle Scholar
  10. Danley, P., 2011. Aggression in closely related Malawi cichlids varies inversely with habitat complexity. Environmental Biology of Fishes 92: 275–284.CrossRefGoogle Scholar
  11. Danley, P., M. Husemann, B. Ding, L. Dipetro, E. Beverly & D. Peppe, 2012. The impact of the geologic history and paleoclimate on the diversification of East African cichlids. International Journal of Evolutionary Biology 2012: 574851. doi: 10.1155/2012/574851.
  12. Danley, P. D., J. A. Market, M. E. Arnegard & T. D. Kocher, 2000. Divergence with gene flow in the rock-dwelling cichlids of Lake Malawi. Evolution 54: 1725–1737.CrossRefPubMedGoogle Scholar
  13. Dufrene, M. & P. Legendre, 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67: 345–366.Google Scholar
  14. Ferreira, C. E. L., J. E. A. Goncçalves & R. Coutinho, 2001. Community structure of fishes and habitat complexity on a tropical rocky shore. Environmental Biology of Fishes 61: 353–369.CrossRefGoogle Scholar
  15. Fryer, G., 1959. The trophic interrelationships and ecology of some littoral communities of Lake Nyasa with especial reference to the fishes, and a discussion of the evolution of a group of rock-frequenting cichlidae. Proceedings of the Zoological Society of London 132: 153–281.CrossRefGoogle Scholar
  16. Genner, M. J. & G. F. Turner, 2005. The mbuna cichlids of Lake Malawi: a model for rapid speciation and adaptive radiation. Fish and Fisheries 6: 1–34.CrossRefGoogle Scholar
  17. Genner, M. J., G. F. Turner & S. J. Hawkins, 1999. Foraging of rocky habitat cichlid fishes in Lake Malawi: coexistence through niche partitioning? Oecologia 121: 283–292.CrossRefGoogle Scholar
  18. Genner, M. J., M. I. Taylor, D. F. R. Cleary, S. J. Hawkins, M. E. Knight & G. F. Turner, 2004. Beta diversity of rock-restricted cichlid fishes in Lake Malawi: importance of environmental and spatial factors. Ecography 27: 601–610.CrossRefGoogle Scholar
  19. Genner, M. J., A. Botha & G. F. Turner, 2006. Translocations of rocky habitat cichlid fishes to Nkhata Bay, Lake Malawi. Journal of Fish Biology 69: 622–628.CrossRefGoogle Scholar
  20. Gratwicke, B. & M. R. Speight, 2005. The relationship between fish species richness, abundance and habitat complexity in a range of shallow tropical marine habitats. Journal of Fish Biology 66: 650–667.CrossRefGoogle Scholar
  21. Heck Jr, K. L. & G. S. Wetstone, 1977. Habitat complexity and invertebrate species richness and abundance in tropical seagrass meadows. Journal of Biogeography 4: 135–142.CrossRefGoogle Scholar
  22. Hill, B. J. & A. J. Ribbink, 1978. Depth equilibration of a shallow-water cichlid fish. Journal of Fish Biology 13: 741–745.CrossRefGoogle Scholar
  23. Hooper, D., N. Buchmann, V. Degrange, S. M. Díaz, M. O. Gessner, P. Grime, F. Hulot, F. Mermillod-Blondin, L. Van Peer, J. Roy, A. Symstad, M. Solan & E. M. Spehn, 2002. Species diversity, functional diversity and ecosystem functioning. Oxford University Press, Oxford: 195–281.Google Scholar
  24. Hori, M., M. M. Gashagaza, M. Nshombo & H. Kawanabe, 1993. Littoral fish communities in lake Tanganyika: irreplaceable diversity supported by intricate interactions among species. Conservation Biology 7: 657–666.CrossRefGoogle Scholar
  25. Husemann, M., M. Tobler, C. Mccauley, B. Ding & P. D. Danley, 2014. Evolution of body shape in differently coloured sympatric congeners and allopatric populations of Lake Malawi’s rock-dwelling cichlids. Journal of Evolutionary Biology 27: 826–839.CrossRefPubMedGoogle Scholar
  26. Huston, M. A., 1994. Biological diversity: the coexistence of species. Cambridge University Press, Cambridge.Google Scholar
  27. Koblmüller, U. K. Schliewen, N. Duftner, K. M. Sefc, C. Katongo & C. Sturmbauer, 2008. Age and spread of the haplochromine cichlid fishes in Africa. Molecular Phylogenetics and Evolution 49: 153–169.CrossRefPubMedGoogle Scholar
  28. Kohn, A. J. & P. J. Leviten, 1976. Effect of habitat complexity on population density and species richness in tropical intertidal predatory gastropod assemblages. Oecologia 25: 199–210.CrossRefGoogle Scholar
  29. Konings, A., 2007. Malawi Cichlids in their natural habitat, 4th ed. Cichlid Press, El Paso.Google Scholar
  30. Kovalenko, K., S. Thomaz & D. Warfe, 2012. Habitat complexity: approaches and future directions. Hydrobiologia 685: 1–17.CrossRefGoogle Scholar
  31. Lassau, S. A. & D. F. Hochuli, 2004. Effects of habitat complexity on ant assemblages. Ecography 27: 157–164.CrossRefGoogle Scholar
  32. Lavorel, S., S. Mcintyre, J. Landsberg & T. D. A. Forbes, 1997. Plant functional classifications: from general groups to specific groups based on response to disturbance. Trends in Ecology & Evolution 12: 474–478.CrossRefGoogle Scholar
  33. MacArthur, R. H. & J. W. MacArthur, 1961. On bird species diversity. Ecology 42: 594–598.CrossRefGoogle Scholar
  34. MacArthur, R. H. & E. O. Wilson, 1963. An equilibrium theory of insular zoogeography. Evolution 17: 373–387.CrossRefGoogle Scholar
  35. Markert, J. A., M. E. Arnegard, P. D. Danley & T. D. Kocher, 1999. Biogeography and population genetics of the Lake Malawi cichlid Melanochromis auratus: habitat transience, philopatry and speciation. Molecular Ecology 8: 1013–1026.CrossRefGoogle Scholar
  36. Marsh, A. C. & A. J. Ribbink, 1981. A comparison of the abilities of three sympatric species of Petrotilapia (Cichlidae, Lake Malawi) to penetrate deep water. Environmental Biology of Fishes 6: 367–369.CrossRefGoogle Scholar
  37. McCune, B., J. B. Grace & D. L. Urban, 2002. Analysis of ecological communities. MjM Software Design, Gleneden Beach.Google Scholar
  38. Morlon, H., G. Chuyong, R. Condit, S. Hubbell, D. Kenfack, D. Thomas, R. Valencia & J. L. Green, 2008. A general framework for the distance–decay of similarity in ecological communities. Ecology Letters 11: 904–917.CrossRefPubMedCentralPubMedGoogle Scholar
  39. Parnell, N. F. & J. T. Streelman, 2011. The macroecology of rapid evolutionary radiation. Proceedings of the Royal Society B: Biological Sciences 278: 2486–2494.CrossRefPubMedCentralPubMedGoogle Scholar
  40. Parr, C. L., B. J. Ryan & S. A. Setterfield, 2010. Habitat complexity and invasive species: the impacts of gamba grass (Andropogon gayanus) on invertebrates in an Australian tropical savanna. Biotropica 42: 688–696.CrossRefGoogle Scholar
  41. Petraitis, P. S., R. E. Latham & R. A. Niesenbaum, 1989. The maintenance of species diversity by disturbance. The Quarterly Review of Biology 64: 393–418.CrossRefGoogle Scholar
  42. Petren, K. & T. J. Case, 1998. Habitat structure determines competition intensity and invasion success in gecko lizards. Proceedings of the National Academy of Sciences of the United States of America 95: 11739–11744.CrossRefPubMedCentralPubMedGoogle Scholar
  43. R Development Core Team, 2012. R: A language and environment for statistical computing. Retrieved from http://www.R-project.org, R Foundation for Statistical Computing, Vienna, Austria.
  44. Rejwan, C., N. C. Collins, L. J. Brunner, B. J. Shuter & M. S. Ridgway, 1999. Tree regression analysis on the nesting habitat of smallmouth bass. Ecology 80: 341–348.CrossRefGoogle Scholar
  45. Ribbink, A. J., A. C. Marsh, B. C. Marsh, A. C. Ribbink & B. J. Sharp, 1983. A preliminary survey of the cichlid fishes of the rocky habitats of Lake Malawi. South African Journal of Zoology 18: 149–310.Google Scholar
  46. Ricklefs, R. E. & D. Schluter, 1993. Species diversity in ecological communities: historical and geographical perspectives. University of Chicago Press, Chicago.Google Scholar
  47. Roberts, C. & R. Ormond, 1987. Habitat complexity and coral reef fish diversity and abundance on Red Sea fringing reefs. Marine Ecology Progress Series 41: 1–8.CrossRefGoogle Scholar
  48. Rosenzweig, M. L., 1995. Species diversity in space and time. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  49. Seehausen, O. & N. Bouton, 1998. The community of rock-dwelling cichlids in Lake Victoria. Bonner Zoologische Beitrage 47: 301–312.Google Scholar
  50. Seehausen, O., J. J. M. V. Alphen & F. Witte, 1997. Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science 277: 1808–1811.CrossRefGoogle Scholar
  51. Shumway, C. A., H. A. Hofmann & A. P. Dobberfuhl, 2007. Quantifying habitat complexity in aquatic ecosystems. Freshwater Biology 52: 1065–1076.CrossRefGoogle Scholar
  52. Simpson, E. H., 1949. Measurement of diversity. Nature 163: 688.CrossRefGoogle Scholar
  53. Tews, J., U. Brose, V. Grimm, K. Tielbörger, M. C. Wichmann, M. Schwager & F. Jeltsch, 2004. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. Journal of Biogeography 31: 79–92.CrossRefGoogle Scholar
  54. Therneau, T. M., B. Atkinson, B. Ripley, J. Oksanen & G. De’ath, 2012. mvpart: multivariate partitioning, R package version 1.6-0. http://CRAN.R-project.org/package=mvpart.
  55. Trendall, J., 1988. The distribution and dispersal of introduced fish at Thumbi West Island in Lake Malawi, Africa. Journal of Fish Biology 33: 357–369.CrossRefGoogle Scholar
  56. Van Oppen, M. J., G. F. Turner, C. Rico, R. L. Robinson, J. C. Deutsch, M. J. Genner & G. M. Hewitt, 1998. Assortative mating among rock-dwelling cichlid fishes supports high estimates of species richness from Lake Malawi. Molecular Ecology 7: 991–1001.CrossRefGoogle Scholar
  57. Vandermeer, J. H., 1970. The community matrix and the number of species in a community. The American Naturalist 104: 73–83.CrossRefGoogle Scholar
  58. Wainwright, P. C. & S. M. Reilly, 1994. Ecological morphology: integrative organismal biology. University of Chicago Press, Chicago.Google Scholar
  59. Whitmore, C., R. Slotow, T. E. Crouch & A. S. Dippenaar-Schoeman, 2002. Diversity of spiders (Araneae) in a savanna reserve, Northern Province, South Africa. Journal of Arachnology 30: 344–356.CrossRefGoogle Scholar
  60. Wiens, J. J. & M. J. Donoghue, 2004. Historical biogeography, ecology and species richness. Trends in Ecology & Evolution 19: 639–644.CrossRefGoogle Scholar
  61. Williams, S. E., H. Marsh & J. Winter, 2002. Spatial scale, species diversity, and habitat structure: small mammals in Australian tropical rain forest. Ecology 83: 1317–1329.CrossRefGoogle Scholar
  62. Willig, M. R., D. M. Kaufman & R. D. Stevens, 2003. Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annual Review of Ecology, Evolution, and Systematics 34: 273–309.CrossRefGoogle Scholar
  63. Willis, S., K. Winemiller & H. Lopez-Fernandez, 2005. Habitat structural complexity and morphological diversity of fish assemblages in a Neotropical floodplain river. Oecologia 142: 284–295.CrossRefPubMedGoogle Scholar
  64. Wright, D. H., 1983. Species-energy theory: an extension of species-area theory. Oikos 41: 496–506.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Baoqing Ding
    • 1
  • Jason Curole
    • 2
  • Martin Husemann
    • 1
    • 3
  • Patrick D. Danley
    • 1
  1. 1.Department of BiologyBaylor UniversityWacoUSA
  2. 2.New OrleansUSA
  3. 3.Institute of Biology/ZoologyUniversity of HalleHalleGermany

Personalised recommendations