Hydrobiologia

, Volume 746, Issue 1, pp 433–444 | Cite as

A whole-lake experiment to control invasive rainbow smelt (Actinoperygii, Osmeridae) via overharvest and a food web manipulation

  • Jereme W. Gaeta
  • Thomas R. Hrabik
  • Greg G. Sass
  • Brian M. Roth
  • Stephen J. Gilbert
  • M. Jake Vander Zanden
Invasive Species

Abstract

Invasive rainbow smelt (Osmerus mordax) have spread rapidly throughout inland lakes of North America with detrimental effects on several native fishes. To test for the potential to control this species, we conducted an experimental removal of rainbow smelt in Sparkling Lake, Wisconsin during 2002–2009. We combined intensive spring harvest of rainbow smelt with an effort to increase predation on this invasive through restricted angler harvest of walleye and increased stocking of walleye (Sander vitreus). Over 4,170 kg of rainbow smelt were harvested during the experiment; up to 93% of adults were removed annually. We observed a significant decline in rainbow smelt gillnet catches during the removal. However, rainbow smelt relative abundances began increasing upon cessation of the removal effort. Bioenergetics modeling suggested that despite achieving higher than the regional average walleye densities, walleye consumed only a fraction of the rainbow smelt standing stock biomass. Our findings suggest that removal of rainbow smelt from invaded lakes may be difficult, and reinforce the importance of prevention as a strategy to limit the expansion of this invasive fish.

Keywords

Bioenergetics Overharvest Rainbow smelt (Osmerus mordaxWalleye (Sander vitreus

References

  1. Allen, M. S. & J. E. Hightower, 2010. Fish population dynamics: mortality, growth, and recruitment. In Hubert, W. A. & M. C. Quist (eds), Inland fisheries management in North America. American Fisheries Society, Bethesda, MD: 43–79.Google Scholar
  2. Beard, T. D., M. T. Hansen & S. R. Carpenter, 2003. Development of a regional stock-recruitment model for understanding factors affecting walleye recruitment in Northern Wisconsin lakes. Transactions of the American Fisheries Society 132(2): 382–391.CrossRefGoogle Scholar
  3. Beisner, B. E., A. R. Ives & S. R. Carpenter, 2003. The effects of an exotic fish invasion on the prey communities of two lakes. Journal of Animal Ecology 72: 341–342.CrossRefGoogle Scholar
  4. Cade, B. S. & B. R. Noon, 2003. A gentle introduction to quantile regression for ecologists. Frontiers in Ecology and the Environment 1(8): 412–420.CrossRefGoogle Scholar
  5. Cummins, K. W. & J. C. Wuycheck, 1971. Caloric equivalents for investigations in ecological energetics. International Association of Theoretical and Applied Limnology 18: 1–158.Google Scholar
  6. Evans, D. O. & D. H. Loftus, 1987. Colonization of inland lakes in the great-lakes region by rainbow smelt, Osmerus mordax – their fresh-water niche and effects on indigenous fishes. Canadian Journal of Fisheries and Aquatic Sciences 44: 249–266.CrossRefGoogle Scholar
  7. Franzin, W. G., B. A. Barton, R. A. Remnant, D. B. Wain & S. J. Pagel, 1994. Range extension, present and potential distribution, and possible effects of rainbow smelt in Hudson Bay drainage waters of Northwestern Ontario, Manitoba, and Minnesota. North American Journal of Fish Management 14: 65–76.CrossRefGoogle Scholar
  8. Gaeta, J. W., J. S. Read, J. F. Kitchell & S. R. Carpenter, 2012. Eradication via destratification: whole-lake mixing to selectively remove rainbow smelt, a cold-water invasive species. Ecological Applications 22(3): 817–827.PubMedCrossRefGoogle Scholar
  9. Gelman, A. & J. Hill, 2008. Data analysis using regression and multilevel/heirarchical models. Cambridge University Press, New York, NY.Google Scholar
  10. Hansen, G. J. A., C. L. Hein, B. M. Roth, M. J. Vander Zanden, J. W. Gaeta, A. W. Latzka & S. R. Carpenter, 2013. Food web consequences of long-term invasive crayfish control. Canadian Journal of Fisheries and Aquatic Sciences 70(7): 1109–1122.CrossRefGoogle Scholar
  11. Hansen, M. J., N. P. Lester & C. C. Krueger, 2010. Natural lakes. In Hubert, W. A. & M. C. Quist (eds), Inland fisheries management in North America. American Fisheries Society, Bethesda, MD: 449–500.Google Scholar
  12. Hanson, P. C., T. B. Johnson, D. E. Schindler & J. F. Kitchell, 1997. Fish Bioenergetics 3.0 for Windows. Center For Limnology, University of Wisoconsin – Madison, Madison, WI.Google Scholar
  13. Hein, C. L., J. M. Vander Zanden & J. J. Magnuson, 2007. Intensive trapping and increased fish predation cause massive population decline of an invasive crayfish. Freshwater Biology 52(6): 1134–1146.CrossRefGoogle Scholar
  14. Holeck, K. T., E. L. Mills, H. J. MacIsaac, M. R. Dochoda, R. I. Colautti & A. Ricciardi, 2004. Bridging troubled waters: biological invasions, transoceanic shipping, and the Laurentian Great Lakes. Bioscience 54(10): 919–929.CrossRefGoogle Scholar
  15. Hrabik, T. R., J. J. Magnuson & A. S. McLain, 1998. Predicting the effects of rainbow smelt on native fishes in small lakes: evidence from long-term research on two lakes. Canadian Journal of Fisheries and Aquatic Sciences 55(6): 1364–1371.CrossRefGoogle Scholar
  16. Hrabik, T. R., M. P. Carey & M. S. Webster, 2001. Interactions between young-of-the-year exotic rainbow smelt and native yellow perch in a northern temperate lake. Transactions of the American Fisheries Society 130(4): 568–582.CrossRefGoogle Scholar
  17. Isely, J. J. & T. B. Grabowski, 2007. Age and growth. In Guy, C. S. & M. L. Brown (eds), Analysis and interpretation of freshwater fisheries data. American Fisheries Society, Bethesda, Maryland: 187–228.Google Scholar
  18. Isermann, D. A. & C. P. Paukert, 2010. Regulating harvest. In Hubert, W. A. & M. C. Quist (eds), Inland fisheries management in North America. American Fisheries Society, Bethesda, MD: 185–212.Google Scholar
  19. Johnson, B. M. & J. P. Goettl Jr, 1999. Food web changes over fourteen years following introduction of rainbow smelt into a Colorado reservoir. North American Journal of Fish Management 19(3): 629–642.CrossRefGoogle Scholar
  20. Kitchell, J. F., D. J. Stewart & D. Weininger, 1977. Applications of a bioenergetics model to yellow perch (Perca flavescens) and walleye (Stizostedion vitreum vitreum). Journal of the Fisheries Research Board of Canada 34: 1922–1935.CrossRefGoogle Scholar
  21. Knapp, R. A. & K. R. Matthews, 1998. Eradication of nonnative fish by gill netting from a small mountain lake in California. Restoration Ecology 6(2): 207–213.CrossRefGoogle Scholar
  22. Kolar, C. S., W. R. Courtenay Jr & L. G. Nico, 2010. Managing undesired and invading fishes. In Hubert, W. A. & M. C. Quist (eds), Inland fisheries management in North America. American Fisheries Society, Bethesda, MD: 213–259.Google Scholar
  23. Krueger, D. M. & T. R. Hrabik, 2005. Food web alterations that promote native species: the recovery of cisco (Coregonus artedi) populations through management of native piscovoures. Canadian Journal of Fisheries Aquatic Science 62(10): 2177–2188.CrossRefGoogle Scholar
  24. Lantry, B. F. & D. J. Stewart, 1993. Ecological energetics of rainbow smelt in the Laurentian Great Lakes: an interlake comparison. Transactions of the American Fisheries Society 122(5): 951–976.CrossRefGoogle Scholar
  25. Lathrop, R. C., D. S. Liebl & K. Welke, 2013. Carp removal to increase water clarity and aquatic plants in shallow eutrophic Lake Wingra LakeLine Magazine, Vol. 33. North American Lake Mangement Society, Madison, WI: 23–30.Google Scholar
  26. Lee, C. E., 2002. Evolutionary genetics of invasive species. Trends Ecol Evol 17(8): 386–391.CrossRefGoogle Scholar
  27. Leung, B., D. M. Lodge, D. Finnoff, J. F. Shogren, M. A. Lewis & G. Lamberti, 2002. An ounce of prevention or a pound of cure: bioeconomic risk analysis of invasive species. Proceedings of Royal Society of London Series B: Biological Sciences 269(1508): 2407–2413.CrossRefGoogle Scholar
  28. Lewin, W. C., R. Arlinghaus & T. Mehner, 2006. Documented and potential biological impacts of recreational fishing: insights for management and conservation. Reviews in Fisheries Science 14(4): 305–367.CrossRefGoogle Scholar
  29. Lischka, S. & J. Magnuson, 2006. Timing and site selection of spawning in a landlocked population of rainbow smelt in Wisconsin. Environmental Biology of Fishes 76(2–4): 413–418.CrossRefGoogle Scholar
  30. Lodge, D. M., S. Williams, H. J. MacIsaac, K. R. Hayes, B. Leung, S. Reichard, R. N. Mack, P. B. Moyle, M. Smith, D. A. Andow, J. T. Carlton & A. McMichael, 2006. Biological invasions: recommendations for US policy and management. Ecological Applications 16(6): 2035–2054.PubMedCrossRefGoogle Scholar
  31. Lozano-Vilano, M. D. L., A. J. Contreras-Balderas & M. E. GarcÍa-RamÍrez, 2006. Eradication of spotted jewelfish, Hemichromis guttatus, from Poza San José Del Anteojo, Cuatro Ciénegas Bolsón, Coahuila, Mexico. The Southwestern Naturalist 51(4): 553–555.CrossRefGoogle Scholar
  32. Magnuson, J. J., T. K. Kratz & B. J. Benson (eds), 2006. Long-term dynamics of lakes in the landscape. Oxford University Press Inc, New York, NY.Google Scholar
  33. Mayden, R. L., F. B. Cross & O. T. Gorman, 1987. Distributional history of the rainbow smelt, Osmerus mordax (Salmoniformes, Osmeridae), in the Mississippi River Basin. Copeia 4: 1051–1055.CrossRefGoogle Scholar
  34. McClay, W., 2000. Rotenone use in North America (1988–1997). Fisheries 25(5): 15–21.CrossRefGoogle Scholar
  35. Mercado-Silva, N., G. G. Sass, B. M. Roth, S. Gilbert & M. J. Vander Zanden, 2007. Impact of rainbow smelt (Osmerus mordax) invasion on walleye (Sander vitreus) recruitment in Wisconsin lakes. Canadian Journal of Fisheries and Aquatic Sciences 64(11): 1543–1550.CrossRefGoogle Scholar
  36. Muggeo, V. M. R., 2003. Estimating regression models with unknown break-points. Statistics in Medicine 22(19): 3055–3071.PubMedCrossRefGoogle Scholar
  37. Myers, J. H., D. Simberloff, A. M. Kuris & J. R. Carey, 2000. Eradication revisited: dealing with exotic species. Trends in Ecology and Evolution 15(8): 316–320.PubMedCrossRefGoogle Scholar
  38. Nellbring, S., 1989. The ecology of smelts (genus Osmerus): a literature review. Nordic Journal of Freshwater Research 65: 116–145.Google Scholar
  39. NTL-LTER, Whole Lake Manipulations: Rainbow Smelt Removal, 2011. North Temperate Lakes Long Term Ecological Research Database. http://lter.limnology.wisc.edu/dataset/biocomplexity-north-temperate-lakes-lter-whole-lake-manipulations-rainbow-smelt-removal-2001. Accessed 13 August 2013.
  40. NTL-LTER, Daily Water Temperatures – Sparkling Lake, 2012a. North Temperate Lakes Long Term Ecological Research Database. http://lter.limnology.wisc.edu/datafile/north-temperate-lakes-lter-daily-water-temperature-sparkling-lake. Accessed 13 August 2013.
  41. NTL-LTER, Ice Duration – Troul Lake Area, 2012b. North Temperate Lakes Long Term Ecological Research Database. http://lter.limnology.wisc.edu/dataset/north-temperate-lakes-lter-ice-duration-trout-lake-area-1981-current. Accessed 13 August 2013.
  42. NTL-LTER, Pelagic Prey Sonar Data, 2012c. North Temperate Lakes Long Term Ecological Research Database. http://lter.limnology.wisc.edu/dataset/north-temperate-lakes-lter-pelagic-prey-sonar-data-2001-current. Accessed 13 August 2013.
  43. NTL-LTER, Fish Lengths and Weights, 2013. North Temperate Lakes Long Term Ecological Research Database. http://lter.limnology.wisc.edu/dataset/north-temperate-lakes-lter-fish-lengths-and-weights-1981-current. Accessed 13 August 2013.
  44. Parker, B. R., D. W. Schindler, D. B. Donald & R. S. Anderson, 2001. The effects of stocking and removal of a nonnative salmonid on the plankton of an alpine lake. Ecosystems 4(4): 334–345.CrossRefGoogle Scholar
  45. Pimentel, D., L. Lach, R. Zuniga & D. Morrison, 2000. Environmental and economic costs of nonindigenous species in the United States. Bioscience 50(1): 53–65.CrossRefGoogle Scholar
  46. R Development Core Team, 2013. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
  47. Ricker, W. E., 1975. Computation and interpretation of biological statistics of fish populations bulletin of the fisheries research board of Canada, Vol. 191. Department of Fisheries and Oceans, Ottawa, Canada.Google Scholar
  48. Roth, B. M., 2005. An investigation of exotic rusty crayfish (Orconectes rusticus) and rainbow smelt (Osmerus mordax) interactions in lake food webs: the Sparkling Lake biomanipulation. Ph.D., The University of Wisconsin, Madison.Google Scholar
  49. Roth, B. M., T. R. Hrabik, C. T. Solomon, N. Mercado-Silva & J. F. Kitchell, 2010. A simulation of food-web interactions leading to rainbow smelt Osmerus mordax dominance in Sparkling Lake, Wisconsin. Journal of Fish Biology 77(6): 1379–1405.PubMedCrossRefGoogle Scholar
  50. Sala, O. E., F. S. Chapin, J. J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, L. F. Huenneke, R. B. Jackson, A. Kinzig, R. Leemans, D. M. Lodge, H. A. Mooney, M. Oesterheld, N. L. Poff, M. T. Sykes, B. H. Walker, M. Walker & D. H. Wall, 2000. Biodiversity – global biodiversity scenarios for the year 2100. Science 287(5459): 1770–1774.PubMedCrossRefGoogle Scholar
  51. Sass, G. G., S. W. Hewett, T. D. Beard, A. H. Fayram & J. F. Kitchell, 2004. The role of density dependence in growth patterns of ceded territory walleye populations of northern Wisconsin: effects of changing management regimes. North American Journal of Fisheries Management 24(4): 1262–1278.CrossRefGoogle Scholar
  52. Swain, D. P., A. F. Sinclair & J. Mark Hanson, 2007. Evolutionary response to size-selective mortality in an exploited fish population. Proceedings of the Royal Society B: Biological Sciences 274(1613): 1015–1022.PubMedCentralPubMedCrossRefGoogle Scholar
  53. Van Oosten, J., 1937. The dispersal of smelt, Osmerus mordax (Mitchill), in the Great Lakes region. Transactions of the American Fisheries Society 66: 160–171.CrossRefGoogle Scholar
  54. Vander Zanden, M. J. & J. D. Olden, 2008. A management framework for preventing the secondary spread of aquatic invasive species. Canadian Journal of Fisheries and Aquatic Sciences 65(7): 1512–1522.CrossRefGoogle Scholar
  55. Vander Zanden, M. J., G. J. A. Hansen, S. N. Higgins & M. S. Kornis, 2010. A pound of prevention, plus a pound of cure: early detection and eradication of invasive species in the Laurentian Great Lakes. Journal of Great Lakes Research 36(1): 199–205.CrossRefGoogle Scholar
  56. Vitousek, P. M., C. M. Dantonio, L. L. Loope & R. Westbrooks, 1996. Biological invasions as global environmental change. American Scientist 84(5): 468–478.Google Scholar
  57. Vredenburg, V. T., 2004. Reversing introduced species effects: experimental removal of introduced fish leads to rapid recovery of a declining frog. Proceedings of the National Academy of Sciences USA 101(20): 7646–7650.CrossRefGoogle Scholar
  58. Weidel, B. C., D. C. Josephson & C. E. Kraft, 2007. Littoral fish community response to smallmouth bass removal from an Adirondack lake. Transactions of the American Fisheries Society 136(3): 778–789.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jereme W. Gaeta
    • 1
    • 2
  • Thomas R. Hrabik
    • 3
  • Greg G. Sass
    • 4
  • Brian M. Roth
    • 5
  • Stephen J. Gilbert
    • 6
  • M. Jake Vander Zanden
    • 1
  1. 1.Center for LimnologyUniversity of Wisconsin – MadisonMadisonUSA
  2. 2.Department of Watershed Sciences and the Ecology CenterUtah State UniversityLoganUSA
  3. 3.Department of BiologyUniversity of Minnesota – DuluthDuluthUSA
  4. 4.Escanaba Lake Research StationWisconsin Department of Natural ResourcesBoulder JunctionUSA
  5. 5.Department of Fisheries and WildlifeMichigan State UniversityEast LansingUSA
  6. 6.Bureau of Fisheries ManagementWisconsin Department of Natural ResourcesWoodruffUSA

Personalised recommendations