Skip to main content

Advertisement

Log in

Does variation in morphology correspond with variation in habitat use in freshwater gastropods?

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We tested if variations (i.e., breadth) in morphology and habitat use vary predictably among six aquatic gastropod species that were collected across Indiana and Illinois, USA. We predicted that interspecific morphological variation would positively covary with variation in habitat use among species. We used geometric morphometrics (Procrustes technique and relative warp analysis) to quantify morphology and multivariate analyses (PCA) to quantify habitat. Increased morphological breadth did not vary predictably with increased habitat breadth. However, we found that life history traits correspond with patterns in morphological and habitat breadth for these six aquatic gastropods. Pulmonate gastropods (use lungs for respiration) that lack an operculum cover exhibited decreased morphological breadth compared to coenogastropods (use gills for respiration). This pattern may ultimately be a function of behavioral adaptations in freshwater gastropods. Gastropods that are capable of breathing air or using other behavioral modifications such as burrowing to escape predators may not require high morphological breadth. Conversely, selection may favor higher morphological breadth in gastropods with gills that also do not move out of the water column to escape predators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bolnick, D. I., R. Svänback, J. A. Bordyce, L. H. Yang, J. M. Davis, C. D. Hulsey & M. L. Forister, 2003. The ecology of individuals: incidence and implications of individual specialization. American Naturalist 161: 1–28.

    Article  PubMed  Google Scholar 

  • Bolnick, D. I., R. Svänback, M. S. Araújo & L. Persson, 2007. Comparative support for the niche variation hypothesis that more generalized populations also are more heterogeneous. Proceedings of the National Academy of Sciences USA 104: 10075–10079.

    Article  CAS  Google Scholar 

  • Bookstein, F., 1991. Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge University Press, Cambridge.

    Google Scholar 

  • Brönmark, C., T. Lakowitz & J. Hollander, 2011. Predator-induced morphological plasticity across local populations of a freshwater snail. PLoS One 6: e21773.

    Article  PubMed Central  PubMed  Google Scholar 

  • Cochran-Biederman, J. L. & K. O. Winemiller, 2010. Relationships among habitat, ecomorphology and diets of cichlids in the Bladen River, Belize. Environmental Biology of Fishes 88: 143–152.

    Article  Google Scholar 

  • Cornwell, W. K., D. W. Schwilk & D. D. Ackerly, 2006. A trait-based test for habitat filtering: convex hull volume. Ecology 87: 1465–1471.

    Article  PubMed  Google Scholar 

  • Covich, A. P., 2010. Winning the biodiversity arms race among freshwater gastropods: competition and coexistence through shell variability and predator avoidance. Hydrobiologia 653: 191–215.

    Article  CAS  Google Scholar 

  • Crowl, T. A. & A. P. Covich, 1990. Predator-induced life-history shifts in a freshwater snail. Science 247: 949–951.

    Article  CAS  PubMed  Google Scholar 

  • DeWitt, T. J., A. Sih & D. S. Wilson, 1998. Costs and limits of phenotypic plasticity. Trends Ecology and Evolution 13: 77–81.

    Article  CAS  Google Scholar 

  • DeWitt, T. J., B. W. Robinson & D. S. Wilson, 2000. Functional diversity among predators of a freshwater snail imposes an adaptive trade-off for shell morphology. Evolutionary Ecology Research 2: 129–148.

    Google Scholar 

  • Dillon, R. T., 2011. Robust shell phenotype is a local response to stream size in the genus Pleurocera (Rafinesque, 1818). Malacologia 53: 265–277.

    Article  Google Scholar 

  • Dillon, R. T., S. J. Jacquemin & M. Pyron, 2013. Cryptic phenotypic plasticity in populations of the freshwater prosobranch snail, Pleurocera canaliculata. Hydrobiologia 709: 117–127.

    Article  CAS  Google Scholar 

  • Dunithan, A., S. Jacquemin & M. Pyron, 2012. Morphology of Elimia livescens (Mollusca: Pleuroceridae) in Indiana, USA. American Malacological Bulletin 30: 127–133.

    Article  Google Scholar 

  • Felsenstein, J., 1985. Phylogenies and the comparative method. American Naturalist 125: 1–15.

    Article  Google Scholar 

  • Healy, R. W., 1979. River Mileages and Drainage Areas for Illinois Streams. Department of the Interior, US Geological Survey and US Army Corps of Engineers – Report 79–110.

  • Hoggatt, R. E., 1975. Drainage Area of Indiana Streams. Department of the Interior, US Geological Survey, Indianapolis.

    Google Scholar 

  • Holomuzki, J. R. & B. J. F. Biggs, 2006. Habitat-specific variation and performance trade-offs in shell armature of New Zealand mudsnails. Ecology 87: 1038–1047.

    Article  PubMed  Google Scholar 

  • Hoverman, J. T., J. R. Auld & R. A. Relyea, 2005. Putting prey back together again: integrating predator-induced behavior, morphology, and life history. Oecologia 144: 481–491.

    Article  PubMed  Google Scholar 

  • Hutchinson, G. E., 1959. Homage to Santa Rosalia, or why are there so many kinds of animals? American Naturalist 93: 145–159.

    Article  Google Scholar 

  • Jackson, D. A., 1993. Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74: 2204–2214.

    Article  Google Scholar 

  • Jacquemin, S. J. & M. Pyron, 2011. Fishes of Indiana streams: current and historic assemblage structure. Hydrobiologia 665: 39–50.

    Article  Google Scholar 

  • Julliard, R., J. Clavel, V. Devictor, F. Jiguet & D. Couvet, 2006. Spatial segregation of specialists and generalists in bird communities. Ecology Letters 9: 1237–1244.

    Article  PubMed  Google Scholar 

  • Kemp, P. & M. D. Bertness, 1984. Snail shape and growth rates: evidence for plastic shell allometry in Littorina littorea. Proceedings of the Academy of Sciences USA 81: 811–813.

    Article  CAS  Google Scholar 

  • Klingenberg, C. P. & G. S. McIntyre, 1998. Geometric morphometrics of developmental instability: analyzing patterns of fluctuating asymmetry with procrustes methods. Evolution 52: 1363–1375.

    Article  Google Scholar 

  • Knouft, J. H., N. M. Caruso, P. J. Dupre, D. R. Anderson, D. R. Trumbo & J. Puccinelli, 2011. Using fine-scale GIS data to assess the relationship between intra-annual environmental niche variability and population density in a local stream fish assemblage. Methods in Ecology and Evolution 2: 303–311.

    Article  Google Scholar 

  • Lodge, D. M., K. M. Brown, S. P. Klosiewski, R. A. Stein, A. P. Covich, B. K. Leathers & C. Brönmark, 1987. Distribution of freshwater snails: spatial scale and the relative importance of physicochemical and biotic factors. American Malacological Bulletin 5: 73–84.

    Google Scholar 

  • Maddison, W. P. & D. R. Maddison. 2011. Mesquite: a modular system for evolutionary analysis. Version 2.75, http://mesquiteproject.org. Accessed Dec 2011.

  • McClain, C. R., N. A. Johnson & M. A. Rex, 2004. Morphological disparity as a biodiversity metric in lower bathyal and abyssal gastropod assemblages. Evolution 58: 338–348.

    PubMed  Google Scholar 

  • Minton, R. L., A. P. Norwood & D. M. Hayes, 2008. Quantifying phenotypic gradients in freshwater snails: a case study in Lithasia (Gastropoda: Pleuroceridae). Hydrobiologia 605: 173–182.

    Article  Google Scholar 

  • Mower, C. M. & A. M. Turner, 2004. Behavior, morphology, and the coexistence of two pulmonate snails with molluscivorous fish: a comparative approach. American Malacological Bulletin 19: 39–46.

    Google Scholar 

  • Palmer, A. R., 1992. Calcification in marine molluscs: how costly is it? Proceedings of the National Academy of Science USA 89: 1379–1382.

    Article  CAS  Google Scholar 

  • Price, S. A., P. C. Wainwright, D. R. Bellwood, E. Kazancioglu, D. C. Collar & T. J. Near, 2010. Functional innovations and morphological diversification in parrotfish. Evolution 64: 3057–3068.

    PubMed  Google Scholar 

  • Pyron, M., J. Beugly, E. Martin & M. Spielman, 2008. Conservation of the freshwater gastropods of Indiana: historic and current distributions. American Malacological Bulletin 26: 137–151.

    Article  Google Scholar 

  • Pyron, M., J. Beugly, M. Spielman, J. Pritchett & S. Jacquemin, 2009. Habitat variation among aquatic gastropod assemblages of Indiana, USA. The Open Zoology Journal 2: 8–14.

    Article  Google Scholar 

  • Relyea, R. A., 2002. Costs of phenotypic plasticity. American Naturalist 3: 272–282.

    Article  Google Scholar 

  • Remigio, E. A. & P. D. N. Hebert, 2003. Testing the utility of partial COI sequences for phylogenetic estimates of gastropod relationships. Molecular Phylogenetics and Evolution 29: 641–647.

    Article  CAS  PubMed  Google Scholar 

  • Ricklefs, R. E. & D. B. Miles, 1994. Ecological and evolutionary inferences from morphology: an ecological perspective. In Wainwright, P. C. & S. M. Reilly (eds), Ecological Morphology: Integrative Organismal Biology. University of Chicago Press, Chicago: 13–41.

    Google Scholar 

  • Rohlf, F. L., 1990. Rotational fit (Procrustes) methods. In Rohlf, P. C. & F. Bookstein (eds), Proceedings of the Michigan morphometrics workshop. University of Michigan Museum of Zoology, Ann Arbor, MI: 13–41.

    Google Scholar 

  • Rohlf, F. L., 2007. tpsRelw Version 1.45. SUNY, Stony Brook, NY.

    Google Scholar 

  • Rohlf, F. L., 2008. tpsDig Version 2.11. SUNY, Stony Brook, NY.

  • Rundle, S. D. & C. Brönmark, 2001. Inter- and intraspecific trait compensation of defence mechanisms in freshwater snails. Proceedings of the Royal Society London B 268: 1463–1468.

    Article  CAS  Google Scholar 

  • Schilithuizen, M. & M. Haase, 2010. Disentangling true shape differences and experimenter bias: are dextral and sinistral snail shells exact mirror image? Journal of Zoology 282: 191–200.

    Article  Google Scholar 

  • Turner, A. M. & S. L. Montgomery, 2009. Hydroperiod, predators and the distribution of physid snails across the freshwater habitat gradient. Freshwater Biology 54: 1189–1201.

    Article  CAS  Google Scholar 

  • Van Valen, L., 1965. Morphological variation and width of ecological niche. American Naturalist 99: 377–390.

    Article  Google Scholar 

  • Vermeij, G. J. & A. P. Covich, 1978. Coevolution of freshwater gastropods and their predators. American Naturalist 112: 833–843.

    Article  Google Scholar 

  • Violle, C., B. J. Enquist, L. Jiang, C. H. Albert, C. Hulshof, V. Jung & J. Messier, 2012. The return of the variance: intraspecific variability in community ecology. Trends in Ecology and Evolution 27: 244–252.

    Article  PubMed  Google Scholar 

  • Wainwright, P. C., 2007. Functional versus morphological diversity in macroevolution. Annual Reviews of Ecology and Systematics 38: 381–401.

    Article  Google Scholar 

  • Wainwright, P. C. & S. M. Reilly, 1994. Ecological Morphology: Integrative Organismal Biology. University of Chicago Press, Chicago.

    Google Scholar 

  • Zelditch, M. L., D. L. Swiderski, D. H. Sheets & W. L. Fink, 2004. Geometric Morphometrics for Biologists: A Primer. Elsevier Academic Press, San Diego, CA.

    Google Scholar 

Download references

Acknowledgments

Collections were funded by grants from the Indiana Academy of Science. We are grateful to Jeremy Tiemann of the Illinois Natural History Survey (Champaign, IL, USA) for access to historical collection information. We are grateful to multiple individuals who assisted with field collections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Jacquemin.

Additional information

Handling editor: Sonja Stendera

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 441 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ross, B., Jacquemin, S.J. & Pyron, M. Does variation in morphology correspond with variation in habitat use in freshwater gastropods?. Hydrobiologia 736, 179–188 (2014). https://doi.org/10.1007/s10750-014-1905-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-1905-6

Keywords

Navigation