Skip to main content

Advertisement

Log in

Rapid recovery of benthic invertebrates downstream of hyperalkaline steel slag discharges

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

This study assesses the physical and chemical characteristics of hyperalkaline steel slag leachate from a former steelworks on two streams in England and their impacts on benthic invertebrate communities. Using multivariate methods (CCA), we related invertebrate richness and diversity with chemical parameters along the environmental gradient from point sources to less impacted sites downstream. Point discharges are characterised by high pH (10.6–11.5), high ionic strength (dominated by Ca–CO3–OH waters), elevated trace elements (notably Li, Sr and V) and high rates of calcium carbonate precipitation. This combination of stressors gives rise to an impoverished benthic invertebrate community in source areas. The total abundance, taxonomic richness and densities of most observed organisms were strongly negatively correlated with water pH. Analysis using biological pollution monitoring indices (e.g. BMWP and Functional Feeding Groups) shows the system to be highly impacted at source, but when pH approaches values close to aquatic life standards, some 500 m downstream, complex biological communities become established. In addition to showing the rapid recovery of invertebrate communities downstream of the discharges, this study also provides a baseline characterisation of invertebrate communities at the extreme alkaline range of the pH spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Auer, M. T., N. A. Johnson, M. R. Penn & S. W. Effler, 1996. Pollutant sources, depositional environment and the surficial sediments of Onondaga Lake, New York. Journal of Environmental Quality 25: 46–55.

    Article  CAS  Google Scholar 

  • Ball, J. W. & D. K. Nordstrom, 1991. User’s Manual for WATEQ4F with Revised Thermodynamic Database and Test Cases for Calculating Speciation of Major, Trace and Redox Elements in Natural Waters. U.S. Geological Survey Water Resources Investigation, Report 91-183.

  • Berezina, N. A., 2001. Influence of ambient pH on freshwater invertebrates under experimental conditions. Russian Journal of Ecology 32(5): 343–351.

    Article  Google Scholar 

  • Bradley, D. C. & S. J. Ormerod, 2002. Long-term effects of catchment liming on invertebrates in upland streams. Freshwater Biology 47: 161–171.

    Article  CAS  Google Scholar 

  • Buchman, M.F., 2006. NOAA Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Seattle WA. Coastal Protection and Restoration Division, National Oceanic and Atmospheric Administration, 12pp.

  • Buchman, M. F., 2008. NOAA Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Seattle WA. Coastal Protection and Restoration Division, National Oceanic and Atmospheric Administration.

  • Burke, I. T., R. G. Mortimer, S. Palaniyandi, R. A. Whittleston, C. L. Lockwood, D. J. Ashley & D. I. Stewart, 2012a. Biogeochemical reduction processes in a hyper-alkaline leachate affected soil profile. Geomicrobiology Journal 29: 769–779.

    Article  CAS  Google Scholar 

  • Burke, I. T., W. M. Mayes, C. L. Peacock, A. P. Brown, A. P. Jarvis & K. Gruiz, 2012b. Speciation of arsenic, chromium and vanadium in red mud samples from the Ajka spill site, Hungary. Environmental Science & Technology 46: 3085–3092.

    Article  CAS  Google Scholar 

  • Cairns, J., K. L. Dickson, & J. S. Crossman, 1972. The biological recovery of the Clinch River following a fly ash pond spill. 25th Industrial Waste Conference Proceedings. Purdue University, West Lafayette, Indiana, USA: 182–192.

  • Chaurand, P., J. Rose, V. Briois, L. Olivi, J.-L. Hazemann, O. Proux & J.-Y. Bottero, 2007. Environmental impacts of steel slag reused in road construction: a crystallographic and molecular (XANES) approach. Journal of Hazardous Materials 139: 537–542.

    Article  CAS  PubMed  Google Scholar 

  • Chiffoleau, J.-F., L. Chavaud, D. Amouroux, A. Barats, A. Dufour, C. Pecheyran & N. Roux, 2004. Nickel and vanadium contamination of benthic invertebrates following the “Erika” wreck. Aquatic Living Resources 17: 273–280.

    Article  CAS  Google Scholar 

  • Cormier, S. M., G. W. Suter II & L. Zheng, 2013. Derivation of a benchmark for freshwater ionic strength. Environmental Toxicology and Chemistry 32(2): 263–271.

    Article  CAS  PubMed  Google Scholar 

  • Cornelis, G., C.A. Johnson, T. Van Gerven, & C. Vandecasteele, 2008. Leaching mechanisms of oxyanionic metalloid and metal species in alkaline solid wastes: a review. Applied Geochemistry 23: 955–976.

  • Cummins, K. W. & M. J. Klug, 1979. Feeding ecology of stream invertebrates. Annual Review of Ecology and Systematics 10: 147–172.

    Article  Google Scholar 

  • Czerniawska-Kusza, I., 2005. Comparing modified biological working party score system and several biological indices based on macro-invertebrates for water quality. Limnologica 25: 169–176.

    Article  Google Scholar 

  • Dellantonio, A., W. J. Fitz, F. Repmann & W. W. Wenzel, 2010. Disposal of coal combustion residues in terrestrial systems. Journal of Environmental Quality 39: 761–775.

    Article  CAS  PubMed  Google Scholar 

  • Edwards, P. J. & J. B. Maidens, 1995. Investigations into the Impacts of Ferruginous Minewater Discharges in the Pelenna Catchment on Salmonid Spawning Gravels. (Environment Agency) Welsh Region Internal Report No. PL/EAW/95/6. National Rivers Authority, Cardiff, UK.

  • Effler, S. W., 1987. The impact of a chloro-alkali plant on Onondaga Lake and adjoining systems. Water, Air and Soil Pollution 33: 85–115.

    Article  CAS  Google Scholar 

  • Effler, S. W. & C. M. Brooks, 1998. Dry weight deposition in polluted Onondaga Lake, New York, USA. Water, Air and Soil Pollution 103: 389–404.

  • Effler, S. W., C. M. Brooks, J. M. Addess, S. M. Doerr, M. L. Storey & B. A. Wagner, 1991. Pollutant loadings from Solvay waste beds Lower Ninemile Creek, New York. Water, Air and Soil Pollution 55: 427–444.

    Article  CAS  Google Scholar 

  • Effler, S. W., C. M. Matthews Brooks & C. T. Driscoll, 2001. Changes in deposition of phytoplankton constituents in a Ca2+ polluted lake. Environmental Science and Technology 35: 3082–3088.

    Article  CAS  PubMed  Google Scholar 

  • Fichet, D. & P. Miramand, 1998. Vanadium toxicity to three marine invertebrates larvae: Crassostrea gigas, Paracentrotus lividus and Artemia salina. Chemosphere 37: 1363–1368.

    Article  CAS  Google Scholar 

  • Fjellheim, A. & G. G. Raddum, 1995. Benthic animal response after liming of three South Norwegian rivers. Water, Air and Soil Pollution 85: 931–936.

    Article  CAS  Google Scholar 

  • Ford, D. C. & P. W. Williams, 1991. Karst Geomorphology and Hydrology. Chapman and Hall, Cambridge.

    Google Scholar 

  • Garcia-Criado, F., A. Tome, F.J. Vega & C. Antolin, 1999. Performance of some diversity and biotic indices in rivers affected by coal mining in northwestern Spain. Hydrobiologia 394: 209-217.

  • Gerke, T. L., K. G. Scheckel & J. B. Maynard, 2010. Speciation and distribution of vanadium in drinking water iron pipe corrosion by-products. Science of the Total Environment 408: 5845–5853.

    Article  CAS  PubMed  Google Scholar 

  • Heino, J., 2005. Functional biodiversity of macroinvertebrate assemblages along major ecological gradients of boreal headwater streams. Freshwater Biology 50: 1578–1587.

    Article  Google Scholar 

  • Hem, J. D., 1985. Study and interpretation of the chemical characteristics of natural water. USGS Water Supply Paper 2254. United States Geological Survey, Alexandria, Virginia, USA.

  • Jarvis, A. P. & P. L. Younger, 1997. Dominating chemical factors in mine water induced impoverishment of the invertebrate fauna of two streams in the Durham Coalfield, UK. Chemistry and Ecology 13: 249–270.

    Article  CAS  Google Scholar 

  • Jones, A., M. Rogerson, G. Greenway, H. A. B. Potter & W. M. Mayes, 2013. Mine water geochemistry and metal flux in a major historic Pb–Zn–F orefield, the Yorkshire Pennines, UK. Environmental Science and Pollution Research. doi:10.1007/s11356-013-1513-4.

    Google Scholar 

  • Khoury, H. N., E. Salameh & Q. Abdul-Jaber, 1985. Characteristics of an unusual highly alkaline water from the Maqarin area, northern Jordan. Journal of Hydrology 81: 79–91.

    Article  CAS  Google Scholar 

  • Klebercz, O., W. M. Mayes, V. Feigl, A. Anton, A. P. Jarvis & K. Gruiz, 2012. Ecotoxicity of fluvial sediments downstream of the Ajka red mud spill, Hungary. Journal of Environmental Monitoring 14: 2063–2071.

    Article  CAS  PubMed  Google Scholar 

  • Koryak, M., L. J. Stafford, R. J. Reilly & M. P. Magnuson, 2002. Impacts of steel mill slag leachate on the water quality of a small Pennsylvania stream. Journal of Freshwater Ecology 17: 461–465.

    Article  CAS  Google Scholar 

  • Kruse, N. A., L. DeRose, R. Korenowsky, J. R. Bowman, D. Lopez, K. Johnson & E. Rankin, 2013. The role of remediation, natural alkalinity sources and physical stream parameters in stream recovery. Journal of Environmental Management 128: 1000–1011.

    Article  CAS  PubMed  Google Scholar 

  • Kszos, L. A. & A. J. Stewart, 2003. Review of lithium in the aquatic environment: distribution in the United States, toxicity and case example of groundwater contamination. Ecotoxicology 12: 439–447.

    Article  CAS  PubMed  Google Scholar 

  • Layer, K., A. G. Hildrew & G. Woodward, 2013. Grazing and detritivory in 20 stream food webs across a broad pH gradient. Oecologia 171: 459–471.

    Article  PubMed Central  PubMed  Google Scholar 

  • Madsen, J. D., J. A. Bloomfield, J. W. Sutherland, L. W. Eichler & C. W. Boylen, 1996. The aquatic macrophyte community of Onondaga Lake: field survey and plant growth bioassays of lake sediments. Lake and Reservoir Management 12: 73–79.

    Article  Google Scholar 

  • Mason, C. F., 2002. The Biology of Freshwater Pollution, 4th ed. Pearson Education, Essex.

    Google Scholar 

  • Mayes, W. M., A. R. G. Large & P. L. Younger, 2005. The impact of pumped water from a de-watered Magnesian limestone quarry on an adjacent wetland: Thrislington, UK. Environmental Pollution 138: 444–455.

    Article  Google Scholar 

  • Mayes, W. M., P. L. Younger & J. Aumônier, 2006. Buffering of alkaline steel slag across a natural wetland. Environmental Science and Technology 40: 1237–1243.

  • Mayes, W. M., P. L. Younger & J. Aumônier, 2008. Hydrogeochemistry of alkaline steel slag leachates in the UK. Water, Air and Soil Pollution 195: 35–50.

    Article  CAS  Google Scholar 

  • Mayes, W. M., L. C. Batty, P. L. Younger, A. P. Jarvis, M. Kõiv, C. Vohla & Ü. Mander, 2009. Wetland treatment at extremes of pH – a review. Science of the Total Environment 407: 3944–3957.

    Article  CAS  PubMed  Google Scholar 

  • Mayes, W. M., A. P. Jarvis, I. T. Burke, M. Walton, V. Feigl, O. Klebercz & K. Gruiz, 2011. Dispersal and attenuation of trace contaminants downstream of the Ajka bauxite residue (red mud) depository failure, Hungary. Environmental Science and Technology 45(12): 5147–5155.

    Article  CAS  PubMed  Google Scholar 

  • Miliša, M., R. M. Kepčija, I. Radanović, A. Ostojić & I. Habdija, 2006. The impact of aquatic macrophyte (Salix sp. and Cladium mariscus (L.) Pohl.) removal on habitat conditions and macroinvertebrates of tufa barriers (Plitvice Lakes, Croatia). Hydrobiologia 573(1): 183–197.

    Article  Google Scholar 

  • Monteith, D. T., A. G. Hildrew, R. J. Flower, P. J. Raven, W. R. B. Beaumont, P. Collen, A. M. Kreiser, E. M. Shilland & J. H. Winterbottom, 2005. Biological responses to the chemical recovery of acidified fresh waters in the UK. Environmental Pollution 137: 83–101.

    Article  CAS  PubMed  Google Scholar 

  • Parkhurst, D. L. & C. A. J. Appelo, 1999. User’s Guide to PHREEQC–A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. U.S. Geological Survey Water-Resources Investigations Report 99-4259.

  • Pawley, S. M., M. Dobson & M. Fletcher, 2011. Guide to British Freshwater Macroinvertebrates for Biotic Assessment. Freshwater Biological Association, Ambleside.

    Google Scholar 

  • Pires, A. M., I. G. Cowx & M. Coelho, 2000. Benthic macroinvertebrate communities of intermittent streams in the middle reaches of the Guadiana Basin (Portugal). Hydrobiologia 435: 167–175.

    Article  Google Scholar 

  • R Development Core Team, 2012. R: A Language and Environment for Statistical Computing, 3-900051-07-0R. Foundation for Statistical Computing, Vienna, Austria [available on internet at http://www.R-project.org/].

  • Rawer-Jost, C., J. Böhmer, J. Blank & H. Rahmann, 2000. Macroinvertebrate functional feeding group methods in ecological assessment. Hydrobiologia 422(423): 225–232.

    Article  Google Scholar 

  • Roadcap, G. S., W. R. Kelly & C. M. Bethke, 2005. Geochemistry of extremely alkaline (pH > 12) ground water in slag-fill aquifer. Ground Water 43: 806–816.

    Article  CAS  PubMed  Google Scholar 

  • Ross, M. R., E. S. Long & D. S. Dropkin, 2008. Response of macroinvertebrate communities to remediation-stimulating conditions in Pennsylvania streams influenced by acid mine drainage. Environmental Monitoring and Assessment 145: 323–338.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt-Kloiber A. & D. Hering (eds.), 2012. The Taxa and Autecology Database for Freshwater Organisms, Version 5.0 [available on internet at www.freshwaterecology.info accessed on 26 July 2013].

  • Schöll, K. & G. Szövényi, (2011). Planktonic rotifer assemblages of the Danube River at Budapest after the red sludge pollution in Hungary. Bulletin of Environmental Contamination and Toxicology 87(2): 124–128.

  • Short, T. M., J. A. Black & W. J. Birge, 1990. Effects of acid mine drainage on the chemical and biological character of an alkaline headwater stream. Archives of Environmental Contamination and Toxicology 19: 241–248.

    Article  CAS  Google Scholar 

  • Stewart, D. I., I. T. Burke & R. J. G. Mortimer, 2007. Stimulation of microbially mediated chromate reduction in alkaline soil–water systems. Geomicrobiology Journal 24: 655–669.

    Article  CAS  Google Scholar 

  • Takeno, N., 2005. Atlas of Eh-pH diagrams: intercomparison of thermodynamic databases. Geological Survey of Japan Open File Report no. 149.

  • Wilkie, M. P. & C. M. Wood, 1996. The adaptations of fish to extremely alkaline environments. Comparative Biochemistry and Physiology 113B: 665–673.

    Article  CAS  Google Scholar 

  • Zaihua, L., U. Svensson, W. Dreybrodt, Y. Daoxian & D. Buhmann, 1995. Hydrodynamic control of inorganic calcite precipitation in Huanglong Ravine, China: field measurements and theoretical prediction of deposition rates. Geochimica et Cosmochimicha Acta 59: 3087–3097.

    Article  CAS  Google Scholar 

  • Zuur, A. F., E. N. Ieno & G. M. Smith, 2009. Analysing Ecological Data. Springer, Germany.

    Google Scholar 

Download references

Acknowledgements

Part of this work was funded by the UK Natural Environment Research Council (NERC) under Grant NE/K015648/1. Bob Knight is thanked for laboratory analysis, while we are grateful to Katherine Abel, Áron Anton, Alex Riley, Tom Shard and Carl Thomas for field support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. M. Mayes.

Additional information

Handling editor: Chris Joyce

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hull, S.L., Oty, U.V. & Mayes, W.M. Rapid recovery of benthic invertebrates downstream of hyperalkaline steel slag discharges. Hydrobiologia 736, 83–97 (2014). https://doi.org/10.1007/s10750-014-1894-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-1894-5

Keywords