, Volume 732, Issue 1, pp 133–145 | Cite as

Evidence of spatial and temporal changes in sources of organic matter in estuarine sediments: stable isotope and fatty acid analyses

  • Leandro BergaminoEmail author
  • Tatenda Dalu
  • Nicole B. Richoux
Primary Research Paper


We investigated spatial and temporal changes in sources of organic matter in sediments within an estuarine environment in South Africa using fatty acids (FA) and stable isotopes (SI). Samples of sediments and sources of organic matter [i.e., particulate organic matter, microphytobenthos (MPB), macrophytes, salt marsh plants, and terrestrial leaves] were collected during spring and summer 2012, and autumn and winter 2013 from the upper, middle, and lower reaches. A Stable Isotope Analysis in R (SIAR) mixing model was used to identify the organic matter sources contributing to sediments in each estuarine reach and season. We found that diatom-associated fatty acids (20:5ω3; 16:1ω7) increased toward the upper reaches, while long-chained terrigenous fatty acids (24:0) tended to be more prevalent in lower reach sediments. In support of the FA results, the SI mixing model showed a substantial contribution from the marsh grass Spartina maritima in sediments of the lower estuary during periods of low-freshwater discharge (autumn and winter), while MPB was the main component in sediments from the upper and middle reaches during all seasons. Our results have implications for evaluating estuarine food webs since the spatial and seasonal variability in the organic matter deposited can influence estuarine community structure.


Fatty acids Stable isotopes SIAR Sediment deposits Benthic-pelagic coupling South Africa 



This research was funded by the Sandisa Imbewu Initiative at Rhodes University, the Water Research Commission of South Africa, and the National Research Foundation of South Africa. We thank Jeffrey Hean, Katherina Schoo, Matthew Parkinson, and Mandla Magoro for field assistance.

Supplementary material

10750_2014_1853_MOESM1_ESM.docx (22 kb)
Supplementary material 1 (DOCX 22 kb)
10750_2014_1853_MOESM2_ESM.doc (47 kb)
Supplementary material 2 (DOC 47 kb)


  1. Abrantes, K. G., A. Barnett, T. R. Marwick & S. Bouillon, 2013. Importance of terrestrial subsidies for estuarine food webs in contrasting East African catchments. Ecosphere 4: art14.Google Scholar
  2. Antonio, E. S., A. Kasai, M. Ueno, N. Won, Y. Ishihi, H. Yokoyama & Y. Yamashita, 2010. Spatial variation in organic matter utilization by benthic communities from Yura River-Estuary to offshore of Tango Sea, Japan. Estuarine, Coastal and Shelf Science 86: 107–117.CrossRefGoogle Scholar
  3. Arts, M. T., R. G. Ackman & B. J. Holub, 2001. “Essential fatty acids” in aquatic ecosystems: a crucial link between diet and human health and evolution. Canadian Journal of Fisheries and Aquatic Sciences 58: 122–137.CrossRefGoogle Scholar
  4. Arzayus, K. M. & E. A. Canuel, 2005. Organic matter degradation in sediments of the York River estuary: Effects of biological vs. physical mixing. Geochimica et Cosmochimica Acta 69: 455–464.CrossRefGoogle Scholar
  5. Bouillon, S., N. Koedam, W. Baeyens, B. Satyanarayana & F. Dehairs, 2004. Selectivity of subtidal benthic invertebrate communities for local microalgal production in an estuarine mangrove ecosystem during the post-monsoon period. Journal of Sea Research 51: 133–144.CrossRefGoogle Scholar
  6. Bouma, T. J., M. B. D. Vries, E. Low, L. Kusters, P. M. J. Herman, I. C. Tánczos, S. Temmerman, A. Hesselink, P. Meire & S. V. Regenmortel, 2005. Flow hydrodynamics on a mudflat and in salt marsh vegetation: identifying general relationships for habitat characterisations. Hydrobiologia 540: 259–274.CrossRefGoogle Scholar
  7. Budge, S. M. & C. C. Parrish, 1998. Lipid biogeochemistry of plankton, settling matter and sediments in Trinity Bay. Newfoundland. II. Fatty acids. Organic Geochemistry 29: 1547–1559.CrossRefGoogle Scholar
  8. Budge, S. M., C. C. Parrish & C. H. Mckenzie, 2001. Fatty acid composition of phytoplankton, settling particulate matter and sediments at a sheltered bivalve aquaculture site. Marine Chemistry 76: 285–303.CrossRefGoogle Scholar
  9. Canuel, E. A., 2001. Relations between river flow, primary production and fatty acid composition of particulate organic matter in San Francisco and Chesapeake Bays : a multivariate approach. Organic Geochemistry 32: 563–583.CrossRefGoogle Scholar
  10. Canuel, E. A. & C. S. Martens, 1996. Reactivity of recently deposited organic matter : near the sediment-water degradation interface of lipid compounds. 60: 1793–1806.Google Scholar
  11. Canuel, E. A. & A. R. Zimmerman, 1999. Composition of particulate organic matter in the Southern Chesapeake Bay: sources and reactivity. Estuaries 22: 980–994.Google Scholar
  12. Canuel, E. A., K. H. Freeman & S. G. Wakeham, 1997. Isotopic compositions of lipids biomarker compounds in estuarine plants and surface sediments. Limnology and Oceanography 42: 1570–1583.CrossRefGoogle Scholar
  13. Carrie, R. H., L. Mitchell & K. D. Black, 1998. Fatty acids in surface sediment at the Hebridean shelf edge, west of Scotland. Organic Geochemistry 29: 1583–1593.CrossRefGoogle Scholar
  14. Chanton, J. & F. Lewis, 1999. Plankton and dissolved inorganic carbon isotopic composition in a river-dominated estuary: Apalachicola Bay, Florida. Estuaries 22: 575–583.CrossRefGoogle Scholar
  15. Colombo, J., N. Silverberg & J. Gearing, 1997. Lipid biogeochemistry in the Laurentian trough—II. Changes in composition of fatty acids, sterols and aliphatic hydrocarbons during early diagenesis. Organic Geochemistry 26: 257–274.CrossRefGoogle Scholar
  16. Couch, C. A., 1989. Carbon and nitrogen stable isotopes of meiobenthos and their food resources. Estuarine, Coastal and Shelf Science 28: 433–441.CrossRefGoogle Scholar
  17. Dai, J. H. & M. Y. Sun, 2007. Organic matter sources and their use by bacteria in the sediments of the Altamaha estuary during high and low discharge periods. Organic Geochemistry 38: 1–15.CrossRefGoogle Scholar
  18. Dalsgaard, J., M. St. John, G. Kattner, D. Müller-Navarra & H. Wilhelm, 2003. Fatty acid trophic markers in the pelagic marine environment. Advances in Marine Biology 46: 225–340.PubMedCrossRefGoogle Scholar
  19. Deegan, L. & R. Garritt, 1997. Evidence for spatial variability in estuarine food webs. Marine Ecology Progress Series 147: 31–47.CrossRefGoogle Scholar
  20. Dehairs, F., G. G. Rao, P. Chandra Mohan, A. V. Raman, S. Marguillier & L. Hellings, 2000. Tracing mangrove carbon in suspended matter and aquatic fauna of the Gautami- Godavari Delta, Bay of Bengal (India). Hydrobiologia 431: 225–241.CrossRefGoogle Scholar
  21. France, R., 1995. Carbon-13 enrichment in benthic compared to planktonic algae: foodweb implications. Marine Ecology Progress Series 124: 307–312.CrossRefGoogle Scholar
  22. Froneman, P. W., 2000. Feeding studies on selected zooplankton in a temperate estuary, South Africa. Estuarine, Coastal and Shelf Science 51: 543–552.CrossRefGoogle Scholar
  23. Froneman, P. W., 2001. Seasonal changes in zooplankton biomass and grazing in a temperate estuary, South Africa. Estuarine, Coastal and Shelf Science 52: 543–553.CrossRefGoogle Scholar
  24. Fry, B., 2006. Stable Isotope Ecology. Springer, New York: 316 pp.Google Scholar
  25. Fry, B. & E. B. Sherr, 1984. δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contributions in Marine Science 27: 13–47.Google Scholar
  26. Gogou, A. & E. G. Stephanou, 2004. Marine organic geochemistry of the Eastern Mediterranean: 2. Polar biomarkers in Cretan Sea surficial sediments. Marine Chemistry 85: 1–25.CrossRefGoogle Scholar
  27. Goñi, M. A., G. Voulgaris & Y. H. Kim, 2009. Composition and fluxes of particulate organic matter in a temperate estuary (Winyah Bay, South Carolina, USA) under contrasting physical forcings. Estuarine, Coastal and Shelf Science 85: 273–291.CrossRefGoogle Scholar
  28. Graf, G., 1992. Benthic-pelagic coupling: a benthic view. Oceanography and Marine Biology: An Annual Review 30: 149–190.Google Scholar
  29. Haddad, R. I., C. S. Martens & J. W. Farrington, 1992. Quantifying early diagenesis of fatty acids in a rapidly accumulating coastal marine sediment. Organic Geochemistry 19: 206–216.CrossRefGoogle Scholar
  30. Hammer, Ø., D. A. T. Harper, & P. D. Ryan, 2001. PAST: Paleontological Statistics software package for education and data analysis. Palaeontologia Electronica 4: 9 pp.Google Scholar
  31. Harvey, H. & J. Johnston, 1995. Lipid composition and flux of sinking and size-fractionated particles in Chesapeake Bay. Organic Geochemistry 23: 751–764.CrossRefGoogle Scholar
  32. Hedges, J. I. & R. G. Keil, 1995. Sedimentary organic matter preservation—an assessment and speculative synthesis. Marine Chemistry 49: 81–115.CrossRefGoogle Scholar
  33. Hedges, J. I., R. G. Keil & R. Benner, 1997. What happens to terrestrial organic matter in the ocean? Organic Geochemistry 27: 195–212.Google Scholar
  34. Herman, P., J. Middelburg, J. Van De Kopple & C. H. R. Heip, 1999. Ecology of estuarine macrobenthos. Advances in Ecological Research 29: 195–240.CrossRefGoogle Scholar
  35. Hu, J., H. Zhang & P. Peng, 2006. Fatty acid composition of surface sediments in the subtropical Pearl River estuary and adjacent shelf, Southern China. Estuarine, Coastal and Shelf Science 66: 346–356.CrossRefGoogle Scholar
  36. Indarti, E., M. I. A. Majid, R. Hashim & A. Chong, 2005. Direct FAME synthesis for rapid total lipid analysis from fish oil and cod liver oil. Journal of Food Composition and Analysis 18: 161–170.CrossRefGoogle Scholar
  37. Jacob, U., K. Mintenbeck & T. Brey, 2005. Stable isotope food web studies: a case for standardized sample treatment. Marine Ecology Progress Series 287: 251–253.CrossRefGoogle Scholar
  38. Kharlamenko, V., S. Kiyashko, A. Imbs & D. Vyshkvartzev, 2001. Identification of food sources of invertebrates from the seagrass Zostera marina community using carbon and sulfur stable isotope ratio and fatty acid analyses. Marine Ecology Progress Series 220: 103–117.CrossRefGoogle Scholar
  39. Kruskal, J. B. & M. Wish, 1978. Multidimensional scaling. Sage Publications, Beverly Hills.Google Scholar
  40. LeBlanc, C. & R. Bourbonniere, 1989. Carbon isotopes and fatty acids analysis of the sediments of Negro Harbour, Nova Scotia, Canada. Estuarine, Coastal and Shelf Science 28: 261–276.CrossRefGoogle Scholar
  41. McLusky, D. S. & M. Elliott, 2004. The Estuarine Ecosystem, Ecology, Threats and Management, 3rd edn. Oxford University Press, Oxford: 224 pp.Google Scholar
  42. Meziane, T. & M. Tsuchiya, 2000. Fatty acids as tracers of organic matter in the sediment and food web of a mangrove/intertidal flat ecosystem, Okinawa, Japan. Marine Ecology Progress Series 200: 49–57.CrossRefGoogle Scholar
  43. Meziane, T., L. Bodineau, C. Retiere & G. Thoumelin, 1997. The use of lipid markers to define sources of organic matter in sediment and food web of the intertidal salt-marsh-flat ecosystem of Mont-Saint-Michel Bay, France. Journal of Sea Research 38: 47–58.CrossRefGoogle Scholar
  44. Napolitano, G. E., R. J. Pollero, A. M. Gayoso, B. A. Macdonald & R. J. Thompsonii, 1997. Fatty acids as trophic markers of phytoplankton blooms in the Bahia Blanca Estuary (Buenos Aires, Argentina) and in Trinity Bay (Newfoundland, Canada). Biochemical Systematics and Ecology 25: 739–755.CrossRefGoogle Scholar
  45. Olin, J., N. Hussey, S. Rush, G. Poulakis, C. Simpfendorfer, M. Heupel & A. Fisk, 2013. Seasonal variability in stable isotopes of estuarine consumers under different freshwater flow regimes. Marine Ecology Progress Series 487: 55–69.CrossRefGoogle Scholar
  46. Palomo, L. & E. A. Canuel, 2010. Sources of fatty acids in sediments of the York River Estuary: relationships with physical and biological processes. Estuaries and Coasts 33: 585–599.CrossRefGoogle Scholar
  47. Parnell, A. C., R. Inger, S. Bearhop & A. L. Jackson, 2010. Source partitioning using stable isotopes: coping with too much variation. PLOS one 5: e9672.PubMedCentralPubMedCrossRefGoogle Scholar
  48. Parrish, C. C., T. Abrajano, S. M. Budge, R. Helleur, E. D. Hudson, K. Pulchan, & C. Ramos, 2000. Lipid and phenolic biomarkers in marine ecosystems: analysis and applications In Wangersky, P. (ed.), The Handbook of Environmental Chemistry. Springer, Berlin: 193–223.Google Scholar
  49. Perry, G. J., J. K. Volkman, R. B. Johns & H. J. Bavor, 1979. Fatty acids of bacterial origin in contemporary marine sediments. Geochimica et Cosmochimica Acta 43: 1715–1725.CrossRefGoogle Scholar
  50. Phillips, D. L. & J. W. Gregg, 2003. Source partitioning using stable isotopes: coping with too many sources. Oecologia 136: 261–269.PubMedCrossRefGoogle Scholar
  51. Polis, G. A., W. B. Anderson & R. D. Holt, 1997. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annual Review of Ecology and Systematics 28: 289–316.CrossRefGoogle Scholar
  52. Rajendran, N., Y. Suwa & Y. Urushigawa, 1993. Distribution of phospholipid ester-linked fatty acid biomarkers for bacteria in the sediment of Ise Bay, Japan. Marine Chemistry 42: 39–56.CrossRefGoogle Scholar
  53. Richoux, N. B. & P. W. Froneman, 2008. Trophic ecology of dominant zooplankton and macrofauna in a temperate, oligotrophic South African estuary: a fatty acid approach. Marine Ecology Progress Series 357: 121–137.Google Scholar
  54. Riera, P. & P. Richard, 1997. Temporal variation of δ13C in particulate organic matter and oyster Crassostrea gigas in Marennes-Oleron Bay (France): effect of freshwater inflow. Marine Ecology Progress Series 147: 105–115.CrossRefGoogle Scholar
  55. Rowe, G., M. Sibuet, J. Deming, A. Khripounoff, J. Tietjen, S. Macko & R. Theroux, 1991. “Total” sediment biomass and preliminary estimates of organic carbon residence time in deep-sea benthos. Marine Ecology Progress Series 79: 99–114.CrossRefGoogle Scholar
  56. Ryba, S. A. & R. M. Burgess, 2002. Effects of sample preparation on the measurement of organic carbon, hydrogen, nitrogen, sulfur, and oxygen concentrations in marine sediments. Chemosphere 48: 139–147.PubMedCrossRefGoogle Scholar
  57. Schweizer, M., J. Fear & G. Cadisch, 1999. Isotopic (13C) fractionation during plant residue decomposition and its implications for soil organic matter studies. Rapid Communications in Mass Spectrometry 13: 1284–1290.PubMedCrossRefGoogle Scholar
  58. Volkman, J., R. Johns & F. Gillan, 1980. Microbial lipids of an intertidal sediment—I. Fatty acids and hydrocarbons. Geochimica et Cosmochimica Acta 44: 1133–1143.CrossRefGoogle Scholar
  59. Volkman, J. K., S. M. Barrett, S. I. Blackburn, M. P. Mansour, E. L. Sikes & F. Gelin, 1998. Microalgal biomarkers: a review of recent research developments. Organic Geochemistry 29: 1163–1179.CrossRefGoogle Scholar
  60. Wedin, D. A., L. L. Tieszen, B. Dewey & J. Pastor, 1995. Carbon isotope dynamics during grass decomposition and soil organic matter formation. Ecology 76: 1383–1392.CrossRefGoogle Scholar
  61. Whitfield, A. K., A. W. Paterson, A. H. Bok & H. M. Kok, 1994. A comparison of the ichthyofaunas in two permanently open eastern Cape estuaries. South African Journal of Zoology 29: 175–185.Google Scholar
  62. Zieman, J. C., S. A. Macko & A. L. Mills, 1984. Role of seagrasses and mangroves in estuarine food webs: temporal and spatial changes in stable isotope composition and amino acid content during decomposition. Bulletin of Marine Science 35: 380–392.Google Scholar
  63. Zimmerman, A. R. & E. A. Canuel, 2001. Bulk organic matter and lipid biomarker composition of Chesapeake Bay surficial sediments as indicators of environmental processes. Estuarine, Coastal and Shelf Science 53: 319–341.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Leandro Bergamino
    • 1
    Email author
  • Tatenda Dalu
    • 1
  • Nicole B. Richoux
    • 1
  1. 1.Department of Zoology and EntomologyRhodes UniversityGrahamstownSouth Africa

Personalised recommendations