Skip to main content
Log in

Benthic diatoms as indicators of long-term changes in a watershed receiving passive treatment for acid mine drainage

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Between 1995 and 2003, 15 reclamation projects using passive treatment systems were installed in a 70-km2 watershed to reduce acid mine drainage (AMD) impacts from coal mining. Six stream sites were sampled for water chemistry and benthic diatoms on 15 dates from 1996 to 2005; 1 unimpacted reference stream, 4 downstream of treatment systems, and 1 AMD-impacted site with no treatment. Our objective was to determine if diatom communities have responded to restoration by comparing temporal trends at sites downstream of treatment to concurrent trends at untreated and reference sites. Water chemistry at the sites corresponded spatially to AMD sources within the watershed. All sites below treatment had a significant increase in pH. Diatom communities provided several lines of evidence that treatment had lessen AMD impacts over the 10 year study: (1) the percentage of circumneutral taxa significantly increased at 3 of the 4 sites below treatment; (2) the percentage of circumnuetral taxa averaged for all sites below treatment increased significantly; and (3) temporal changes in community composition were significantly directional for 3 of 4 treated sites, becoming progressively more similar to reference communities. This study emphasizes the importance of long-term data sets for assessing recovery of streams following large-scale restoration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Academy of Natural Sciences of Philadelphia, 1974. Slippery Rock Creek Acid Mine Waste Studies for the Appalachian Regional Commission. Academy of Natural Sciences of Philadelphia, Philadelphia, PA.

    Google Scholar 

  • Adams, S. D., W. R. Hill, M. J. Peterson, M. G. Ryon, J. G. Smith & A. J. Stewart, 2002. Assessing recovery in a stream ecosystem: applying multiple chemical and biological recovery endpoints. Ecological Applications 12: 1510–1527.

    Article  Google Scholar 

  • American Public Health Association, 1998. Standard Methods for the Evaluation of Water and Wastewater. American Public Health Association, Washington, DC.

    Google Scholar 

  • Antonopoulos, V. Z., D. N. Papamichail & A. K. Mitsiou, 2001. Statistical and trend analysis of water quality and quantity data for the Strymon River in Greece. Hydrology and Earth System Sciences 5: 679–691.

    Article  Google Scholar 

  • Beran, B., 2008. Slippery Rock Creek Watershed Assessment and Restoration Plan. Report to the Pennsylvania Department of Environmental Protection. Beran Enviornmental Services Inc., Boyers, PA.

  • Bott, T. L., J. K. Jackson, M. E. McTammany, J. D. Newbold, S. T. Rier, B. W. Sweeney & J. M. Battle, 2012. Abandoned coal mine drainage and its remediation: impacts on stream ecosystem structure and function. Ecological Applications 22: 2144–2163.

    Article  PubMed  Google Scholar 

  • Brake, S. S., K. A. Connors & S. B. Romberger, 2001. A river runs through it: impact of acid mine drainage on the geochemistry of West Little Sugar Creek pre- and post-reclamation at the Green Valley coal mine, Indiana, USA. Environmental Geology 40: 1471–1481.

    Article  CAS  Google Scholar 

  • Bray, J. P., P. A. Broady, D. K. Niyogi & J. S. Harding, 2008. Periphyton communities in New Zealand streams impacted by acid mine drainage. Marine and Freshwater Research 59: 1084–1091.

    Article  CAS  Google Scholar 

  • Charles, D. F., F. W. Acker, D. D. Hart, C. W. Reimer & P. B. Cotter, 2006. Large-scale regional variation in diatom-water chemistry relationships: rivers of the eastern United States. Hydrobiologia 561: 27–57.

    Article  CAS  Google Scholar 

  • Christensen, C. L. & P. A. Archibald, 1976. Effectiveness of lime neutralization in stream recovery from acid-mine pollution as indicated by species of diatoms. Phytologia 34: 5–17.

    Google Scholar 

  • Clarke, K. R. & R. M. Warwick, 1994. Similarity-based testing for community pattern: the two-way layout with no replication. Marine Biology 118(1): 167–176.

    Article  Google Scholar 

  • Clarke, K. R. & R. N. Gorley, 2006. Primer v5: User Manual/Tutorial. PRIMER-E, Plymouth.

    Google Scholar 

  • Cohen, R. H. & J. Gorman, 1991. Mining-related nonpoint-source pollution. Water Environment and Technology 3: 55–59.

    Google Scholar 

  • Commonwealth of Pennsylvania, 2002. Chapter 93. Water quality standards. Pennsylvania Code, Title 25, pp. 93.1-93.226. Environmental Protection, Harrisburg, PA.

  • Cravotta, C. A., R. A. Brightbill & M. J. Langland, 2010. Abandoned Mine Drainage in the Swatara Creek Basin, Southern Anthracite Coalfield, Pennsylvania, USA: 1. Stream Water Quality Trends Coinciding with the Return of Fish. Mine Water and the Environment 29: 176–199.

    Article  CAS  Google Scholar 

  • Demchak, J., T. Morrow & J. Skousen, 2001. Treatment of acid mine drainage by four vertical flow wetlands in Pennsylvania. Geochemistry: Exploration, Environment, Analysis 1: 71–80.

    CAS  Google Scholar 

  • DeNicola, D. M., 2000. A review of diatoms found in highly acidic environments. Hydrobiologia 433: 111–122.

    Article  Google Scholar 

  • DeNicola, D. M. & M. G. Stapleton, 1999. Chemical and biological monitoring of Slippery Rock Creek, PA associatd with installation of passive treatment systems to treat acid mine drainage. Final report to Pennsylvania Department of Environmental Protection.

  • DeNicola, D. M. & M. G. Stapleton, 2002. Impact of acid mine drainage on benthic communities in streams: the relative roles of substratum vs. aqueous effects. Environmental Pollution 19: 303–315.

    Article  Google Scholar 

  • DeNicola, D. M., T. R. Czapski & L. Layton, 2012. Epilithic community metabolism as an indicator impact and recovery in streams affected by acid mine drainage. Environmental Management 50: 1035–1046.

    Article  PubMed  Google Scholar 

  • García-Criado, F., A. Tomé, E. J. Vega & C. Antolín, 1999. Performance of some diversity and biotic indices in rivers affected by coal mining in northwestern Spain. Hydrobiologia 394: 209–217.

    Article  Google Scholar 

  • Gore, J. A., J. R. Kelly & J. D. Yount, 1990. Application of ecological theory to determining recovery potential of disturbed lotic ecosystems: research needs and priorities. Environmental Management 14: 755–762.

    Article  Google Scholar 

  • Hamsher, S. E., R. G. Verb & M. L. Vis, 2004. Analysis of acid mine drainage impacted streams using a periphyton index. Journal of Freshwater Ecology 19: 313–324.

    Article  Google Scholar 

  • Hedin, R. S., R. W. Nairn & R. L. P. Kleinmann, 1994. The passive treatment of coal mine drainage. Bureau of Mine Information Circular IC9389. U.S. Department of the Interior, Bureau of Mines, Washington, DC.

  • Helsel, D. R. & R. M. Hirsch, 1992. Statistical Methods in Water Resources. Elsevier, Amsterdam.

    Google Scholar 

  • Herlihy, A. T., P. R. Kaufmann, M. E. Mitch & D. D. Brown, 1990. Regional estimates of acid mine drainage impact on streams in the mid-atlantic and Southeastern United States. Water, Air, and Soil Pollution 50: 91–107.

    Article  CAS  Google Scholar 

  • Hill, B. H., W. T. Willingham, L. P. Parrish & B. H. McFarland, 2000a. Periphyton community responses to elevated metal concentrations in a Rocky Mountain stream. Hydrobiologia 428: 161–169.

    Article  CAS  Google Scholar 

  • Hill, B. H., A. T. Herlihy, P. R. Kaufmann, R. J. Stevenson, F. H. McCormick & C. Burch Johnson, 2000b. Use of periphyton assemblage data as an index of biotic integrity. Journal of the North American Benthological Society 19: 50–67.

    Article  Google Scholar 

  • Hirsch, R. M., J. R. Slack & R. A. Smith, 1982. Techniques of trend analysis for monthly water quality data. Water Resources Research 18: 107–121.

    Article  Google Scholar 

  • Hogsden, K. L. & J. S. Harding, 2011. Consequences of acid mine drainage for the structure and function of benthic stream communities: a review. Freshwater Science 31: 108–120.

    Article  Google Scholar 

  • Hogsden, K. L. & J. S. Harding, 2012. Anthropogenic and natural sources of acidity and metals and their influence on the structure of stream food webs. Environmental Pollution 162: 466–474.

    Article  CAS  PubMed  Google Scholar 

  • Hughes, R. M., D. P. Larsen & J. M. Omernik, 1986. Regional reference sites: a method for assessing stream potentials. Environmental Management 10: 629–635.

    Article  CAS  Google Scholar 

  • Johnson, D. B. & K. B. Hallberg, 2005. Acid mine drainage remediation options: a review. Science of the Total Environment 338: 3–14.

    Article  CAS  PubMed  Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1986–1991. Süßwasserflora von Mitteleuropa. Bacillariophyceae. Gustav Fischer Verlag, Jena, Stuttgart, New York, Band 2/1: Naviculaceae; Band 2/2: Epithemiaceae, Bacillariaceae, Surirellaceae; Band 2/3: Centrales, Fragilariaceae, Eunotiaceae; Band 2/4: Achnanthaceae.

  • Lake, P. S., N. Bond & P. Reich, 2007. Linking ecological theory with stream restoration. Freshwater Biology 52: 597–615.

    Article  Google Scholar 

  • Lange-Bertalot, H. & G. Moser, 1994. Brachysira: monographie der Gattung. J. Cramer, Berlin.

    Google Scholar 

  • Lind, O. T., 1985. Handbook of Common Methods in Limnology, 2nd ed. Kendall/Hunt, Dubuque.

    Google Scholar 

  • Lowe, R. L., 1974. Environmental requirements and pollution tolerance of freshwater diatoms. EPA 670/4-74-005. U.S. Environmental Protection Agency, Cincinnati.

  • Luís, A. T., P. Teixeira, S. F. P. Almeida, J. X. Matos & E. F. da Silva, 2011. Environmental impact of mining activities in the Lousal area (Portugal): Chemical and diatom characterization of metal-contaminated stream sediments and surface water of Corona stream. Science of the Total Environment 409: 4312–4325.

    Article  PubMed  Google Scholar 

  • Pan, Y., R. J. Stevenson, B. H. Hill, A. T. Herlihy & G. B. Collins, 1996. Using diatoms as indicators of ecological conditions in lotic systems: a regional assessment. Journal of the North American Benthological Society 15: 481–495.

    Article  Google Scholar 

  • Pan, Y., R. J. Stevenson, B. H. Hill & A. T. Herlihy, 2000. Ecoregions and benthic diatom assemblages in Mid-Atlantic Highlands streams, USA. Journal of the North American Benthological Society 19: 518–540.

    Article  Google Scholar 

  • Parker, E. R. & J. A. Weins, 2005. Assessing recovery following environmental accidents: environmental variation, ecological assumptions, and strategies. Ecological Applications 15: 2037–2051.

    Article  Google Scholar 

  • Pennsylvania Department of Environmental Protection, 2008. Surface Mine Conservation and Reclamation Act Reclamation and Incentives Remining Report. Accessed on line 31 January 2014 at: http://www.elibrary.dep.state.pa.us/dsweb/Get/Document-75280/5600-BK-DEP4249.pdf.

  • Pennsylvania Department of Environmental Protection, Knox Office, 1998. Slippery Rock Creek Watershed Comprehensive Mine Reclamation Strategy/Remediation Plan. Pennsylvania Department of Environmental Protection, Harrisburg,.

  • Petty, J. T. & J. Baker, 2004. Water quality variability in tributaries of the Cheat River, a mined Appalachian watershed. Proceedings of the American Society of Mining Reclamation 21: 1484–1504.

    Google Scholar 

  • Petty, J. T., J. B. Fulton, M. P. Strager, G. T. Merovich Jr, J. M. Stiles & P. F. Ziemkiewicz, 2010. Landscape indicators and thresholds of stream ecological impairment in an intensively mined Appalachian watershed. Journal of the North American Benthological Society 29: 1292–1309.

    Article  Google Scholar 

  • Ponader, K. C. & M. G. Potapova, 2007. Diatoms from the genus Achnanthidium in flowing waters of the Appalachian Mountains (North America): Ecology, distribution and taxonomic notes. Limnologica: Ecology and Management of Inland Waters 37: 227–241.

    Article  Google Scholar 

  • Porter, S. D., T. C. Cuffney, M. E. Gurtz & M. R. Meador, 1993. Methods for collecting algal samples as part of the National Water-Quality Assessment Program. U.S.G.S. Open-File Report, U.S. Geological Survey, Washington: 93–409.

  • Potapova, M. & P. B. Hamilton, 2007. Morphological and ecological variation within the Achnanthidium minutissimum (Bacillariophyceae) species complex. Journal of Phycology 43: 561–575.

    Article  Google Scholar 

  • Prygiel, J. & M. Coste, 2000. Guide méthodologique pour la mise en oeuvre de l’Indice Biologique Diatomées NF T 90 354. Agences de l’Eau Cemagref Bordeaux, mars 2000, Agence de l’Eau Artois Picardie, Douai.

  • Rossman, W., E. Wytovich & J. M. Seif, 1997. Abandoned Mines—Pennsylvania’s Single Biggest Water Pollution Problem. Pennsylvania Department of Environmental Protection, Harrisburg.

  • Scullion, J. & R. W. Edwards, 1980. The effects of coal industry pollutants on the macroinvertebrate fauna of a small stream river in the South Wales coalfield. Freshwater Biology 10: 141–162.

    Article  CAS  Google Scholar 

  • Simmons, J. A., E. R. Lawrence & T. G. Jones, 2005. Treated and untreated acid mine drainage effects on stream periphyton biomass, leaf decomposition, and macroinvertebrate diversity. Journal of Freshwater Ecology 20: 413–422.

    Article  Google Scholar 

  • Smucker, N. J. & M. L. Vis, 2009. Use of diatoms to assess agricultural and coal mining impacts on streams and a multiassemblage case study. Journal of the North American Benthological Society 28: 659–675.

    Article  Google Scholar 

  • Smucker, N. J. & M. L. Vis, 2011. Acid mine drainage affects the development and function of epilithic biofilms in streams. Journal of the North American Benthological Society 30: 728–738.

    Article  Google Scholar 

  • Stendera, S. & R. K. Johnson, 2008. Tracking recovery trends of boreal lakes: Use of multiple indicators and habitats. Journal of the North American Benthological Society 27: 529–540.

    Article  Google Scholar 

  • Stevenson, R. J., Y. Pan & H. van Dam, 2010. Assessing environmental conditions in rivers and streams with diatoms. In Stoermer, E. F. & J. P. Smol (eds), The Diatoms: Applications for the Environmental and Earth sciences, 2nd ed. Cambridge University Press, Cambridge: 57–85.

    Chapter  Google Scholar 

  • Stoertz, M. W., H. Bourne, C. Knotts & M. M. White, 2002. The effects of isolation and acid mine drainage on fish and macroinvertebrate communities of Monday Creek, Ohio, USA. Mine Water and the Environment 21: 60–72.

    Article  CAS  Google Scholar 

  • Tiwary, R. K., 2001. Environmental impact of coal mining on water regime and its management. Water Air and Soil Pollution 132: 185–199.

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency, 1997. A Citizen’s Handbook to Address Contaminated Coal Mine Drainage. EPA publication 903-K-97-003; U.S. Government Printing Office: Washington, DC.

  • United States Environmental Protection Agency, 2000. Assessing stream vulnerability to mine drainage and acid deposition in the mid Atlantic by mapping probability sample data from emap and the national stream survey. Accessed 31 January 2014 on line at: http://www.epa.gov/nrmrl/std/mwt/scitosci/431-assessing.pdf.

  • van Dam, H., A. Mertens & J. Sinkeldam, 1994. A coded checklist and ecological indicator values of freshwater diatoms from The Netherlands. Aquatic Ecology 28: 117–133.

    Article  Google Scholar 

  • Verb, R. G. & M. L. Vis, 2000. Comparison of benthic diatom assemblages from streams draining abandoned and reclaimed coal mines and nonimpacted sites. Journal of the North American Benthological Society 19: 274–288.

    Article  Google Scholar 

  • Verb, R. G. & M. L. Vis, 2001. Macroalgal communities from an acid mine drainage impacted watershed. Aquatic Botany 71: 93–107.

    Article  Google Scholar 

  • Verb, R. G. & M. L. Vis, 2005. Periphyton assemblages as bioindicators of mine-drainage in unglaciated western allegheny plateau lotic systems. Water, Air, & Soil Pollution 161: 227–265.

    Article  CAS  Google Scholar 

  • Winterbourn, M. J. & W. F. McDiffett, 1996. Benthic faunas of streams of low pH but contrasting water chemistry in New Zealand. Hydrobiologia 341: 101–111.

    Article  CAS  Google Scholar 

  • Wiseman, I. M., G. P. Rutt & P. J. Edwards, 2004. Constructed wetlands for minewater treatment: environmental benefits and ecological recovery. Water and Environment Journal 18: 133–138.

    Article  Google Scholar 

  • Wolfe, A. P. & H. J. Kling, 2001. A consideration of some North American soft-water Brachysira taxa and description of B. arctoborealis sp. nov. In Jahn, R., J. P. Kociolek, A. Witkowski & P. Compere (eds), Lange-Bertalot-Festschrift Studies on Diatoms. Gantner, Ruggell: 243–264.

    Google Scholar 

  • Younger, P. L., S. A. Banwart & R. S. Hedin, 2002. Mine Water: Hydrology, Pollution, Remediation. Kluwer, Dordrecht.

    Book  Google Scholar 

  • Zalack, J. T., N. J. Smucker & M. L. Vis, 2010. Development of a diatom index of biotic integrity for acid mine drainage impacted streams. Ecological Indicators 10: 287–295.

    Article  CAS  Google Scholar 

  • Ziemkiewicz, P. F., J. G. Skousen & J. Simmons, 2003. Long-term performance of passive acid mine drainage treatment systems. Mine, Water and the Environment 22: 118–129.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Margaret Dunn, The Slippery Rock Creek Watershed Coalition, Stream Restoration Inc., and the Knox Office of the Pennsylvania DEP who were responsible for building most of the treatment systems in the watershed. We thank Tim Danehy, Suresh DeCosta, Cliff Denholm, Heather Doyle, Jason Ferringer, Jeff Giardina, Greg Myers, Jason Oblack, Justin Skarbek, Robin Snyder, Matt Taggart, and Taylor Zenter for their assistance in the field. This project was funded by EPA Section 319 grants from the Pennsylvania DEP, and a Pennsylvania Growing Greener Grant. Comments by three anonymous reviewers improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean M. DeNicola.

Additional information

Handling editor: Judit Padisák

Electronic supplementary material

Below is the link to the electronic supplementary material.

Appendix 1 (PDF 8 kb)

Appendix 2 (PDF 11 kb)

Appendix 3 (PDF 120 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeNicola, D.M., Stapleton, M.G. Benthic diatoms as indicators of long-term changes in a watershed receiving passive treatment for acid mine drainage. Hydrobiologia 732, 29–48 (2014). https://doi.org/10.1007/s10750-014-1842-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-1842-4

Keywords

Navigation