Skip to main content
Log in

The delayed effects of meteorological changes on the water frogs in Central Italy

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In long-lived organisms, the impacts of environmental changes may become evident after time, possibly in future generations. In this study, we attempt to reveal possible delayed effects of meteorological changes on mixed populations of water frogs living in small water bodies located in the Tiber River basin, by using a time-lagged correlation analysis. The analysis shows that the temperature–precipitation pattern induces definite delayed effects, which suggest two potential, possibly co-occurring, explanatory effects: (I) a cumulative and symmetric effect on mortality and (II) a point and asymmetric effect on recruitment. Our data suggest that the water availability in late summer–early autumn affects the survival of tadpoles and migrating frogs, with no differential effect on the parental species Pelophylax bergeri and the hybrid Pelophylax kl. hispanicus, whereas autumn precipitation has a greater impact on the fecundity and/or reproductive success of the parental species. The best time-lagged regression equations between population data and the annual de Martonne aridity index (I DMa) indicate that I DMa < 20 mm °C−1 is critical for the persistence of the water frogs, and predict that the studied populations will experience a significant decline within the current scenario of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Álvarez, D. & A. G. Nicieza, 2002a. Effects of temperature and food quality on anuran larval growth and metamorphosis. Functional Ecology 16: 640–648.

    Article  Google Scholar 

  • Álvarez, D. & A. G. Nicieza, 2002b. Effects of induced variation in anuran larval development on postmetamorphic energy reserves and locomotion. Oecologia 131: 186–195.

    Article  Google Scholar 

  • Andreone, F., C. Corti, R. Sindaco & A. Romano, 2009a. Pelophylax hispanicus. In: IUCN 2013. IUCN Red List of Threatened Species, Version 2013.1 [available on internet at http://www.iucnredlist.org].

  • Andreone, F., C. Corti, R. Sindaco & A. Romano, 2009b. Pelophylax bergeri. In: IUCN 2013. IUCN Red List of Threatened Species, Version 2013.1 [available on internet at http://www.iucnredlist.org].

  • Aragón, P., J. M. Lobo, M. Á. Olalla-Tárraga & M. Á. Rodríguez, 2010. The contribution of contemporary climate to ectothermic and endothermic vertebrate distributions in a glacial refuge. Global Ecology and Biogeography 19: 40–49.

    Article  Google Scholar 

  • Araújo, M. B., W. Thuiller & R. G. Pearson, 2006. Climate warming and the decline of amphibians and reptiles in Europe. Journal of Biogeography 33: 1712–1728.

    Article  Google Scholar 

  • Bates, B. C., Z. W. Kundzewicz, S. Wu & J. P. Palutikof, 2008. Climate Change and Water. Technical Paper of the Intergovernmental Panel on Climate Change. IPCC Secretariat, Geneva.

    Google Scholar 

  • Berger, L., 1982. Hibernation of the European water frogs (Rana esculenta complex). Zoologica Poloniae 29: 57–72.

    Google Scholar 

  • Berger, L., 1988. On the origin of genetic systems in European water frog hybrids. Zoologica Poloniae 35: 5–32.

    Google Scholar 

  • Blaustein, A. R., S. C. Walls, B. A. Bancroft, J. J. Lawler, C. L. Searle & S. S. Gervasi, 2010. Direct and indirect effects of climate change on amphibian populations. Diversity 2: 281–313.

    Article  Google Scholar 

  • Blaustein, A. R., B. A. Han, R. A. Relyea, P. T. J. Johnson, J. C. Buck, S. S. Gervasi & L. B. Kats, 2011. The complexity of amphibian population declines: understanding the role of cofactors in driving amphibian losses. Annals of the New York Academy of Sciences 1223: 108–119.

    Article  PubMed  Google Scholar 

  • Both, C., M. Solé, T. Gomes dos Santos & S. Zanini Cechin, 2009. The role of spatial and temporal descriptors for neotropical tadpole communities in southern Brazil. Hydrobiologia 624: 125–138.

    Article  Google Scholar 

  • Brunetti, M., M. Maugeri, F. Monti & T. Nanni, 2006. Temperature and precipitation variability in Italy in the last two centuries from homogenised instrumental time series. International Journal of Climatology 26: 345–381.

    Article  Google Scholar 

  • Bucci, S., M. Ragghianti, F. Guerrini, V. Cerrini, G. Mancino, A. Morosi, M. Mossone & R. Pascolini, 2000. Negative environmental factors and biodiversity: the case of the hybridogenetic green frog system from Lake Trasimeno. Italian Journal of Zoology 67: 365–370.

    Article  Google Scholar 

  • Buckley, L. B. & W. Jetz, 2007. Environmental and historical constraints on global patterns of amphibian richness. Proceedings of the Royal Society B 274: 1167–1173.

    Article  PubMed Central  PubMed  Google Scholar 

  • Canestrelli, D. & G. Nascetti, 2008. Phylogeography of the pool frog Rana (Pelophylax) lessonae in the Italian Peninsula and Sicily: multiple refugia, glacial expansions and nuclear-mitochondrial discordance. Journal of Biogeography 35: 1923–1936.

    Article  Google Scholar 

  • Carey, A. & M. A. Alexander, 2003. Climate change and amphibian decline: is there a link? Diversity and Distributions 9: 111–121.

    Article  Google Scholar 

  • Christensen, J. H., B. Hewitson, A. Busuioc, A. Chen, X. Gao, I. Held, R. Jones, R. K. Kolli, W. T. Kwon, R. Laprise, V. Magaña Rueda, L. Mearns, C. G. Menéndez, J. Räisänen, A. Rinke, A. Sarr & P. Whetton, 2007. Regional climate projections. In Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor & H. L. Miller (eds), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge: 847–940.

    Google Scholar 

  • Crochet, P. A. & A. Dubois, 2004. Recent changes in the taxonomy of European amphibians and reptiles. In Gasc, J. P., A. Cabela, J. Crnobrnja-Isailovic, D. Dolmen, K. Grossenbacher, P. Haffner, J. Lescure, H. Martens, J. P. Martínez Rica, H. Maurin, M. E. Oliveira, T. S. Sofianodou, M. Veith & A. Zuiderwijk (eds), Atlas of Amphibians and Reptiles in Europe. Museum National d’Histoire Naturelle, Paris: 495–516.

    Google Scholar 

  • D’Amen, M. & P. Bombi, 2009. Global warming and biodiversity: evidence of climate-linked amphibian declines in Italy. Biological Conservation 142: 3060–3067.

    Article  Google Scholar 

  • Daszak, P., D. E. Scott, A. M. Kilpatrick, C. Faggioni, J. W. Gibbons & D. Porter, 2005. Amphibian population declines at Savannah River Site are linked to climate, not chytridiomycosis. Ecology 86: 3232–3237.

    Article  Google Scholar 

  • de Martonne, E., 1926. Une nouvelle fonction climatologique: l’indice d’aridité. La Météorologie 2: 449–459.

    Google Scholar 

  • Di Rosa, I., F. Simoncelli, A. Fagotti & R. Pascolini, 2007. The proximate cause of frog decline? Nature 447: E4–E5.

    Article  PubMed  Google Scholar 

  • Dubois, A. & A. Ohler, 1995a. Frogs of the subgenus Pelophylax (amphibia, anura, genus Rana): a catalogue of available and valid scientific names, with comments on name-bearing types, complete synonymies, proposed common names, and maps showing all type localities. Zoologica Poloniae, Wroclaw 39: 139–204.

    Google Scholar 

  • Dubois, A. & A. Ohler, 1995b. Catalogue of names of frogs of the subgenus Pelophylax (amphibia, anura, genus Rana): a few additions and corrections. Zoologica Poloniae, Wroclaw 39: 205–208.

    Google Scholar 

  • Duellman, W. E. & L. Trueb, 1994. Biology of Amphibians. John Hopkins University Press, Baltimore.

    Google Scholar 

  • Fioramonti, E., R. D. Semlitsch, H. U. Reyer & K. Fent, 1997. Effects of triphenyltin and pH on the growth and development of Rana lessonae and Rana esculenta tadpoles. Environmental Toxicology and Chemistry 16: 1940–1947.

    Article  CAS  Google Scholar 

  • Gervasi, S. S. & J. Foufopoulos, 2008. Costs of plasticity: responses to desiccation decrease post-metamorphic immune function in a pond-breeding amphibian. Functional Ecology 22: 100–108.

    Google Scholar 

  • Günther, R., 1997. Rana lessonae Camerano, 1882. In Gasc, J. P., A. Cabela, J. Crnobrnja-Isailovic, D. Dolmen, K. Grossen Bacher, P. Haffner, J. Lescure, H. Martens, J. P. Martínez Rica, H. Maurin, M. E. Oliveira, T. S. Sofianodou, M. Veith & A. Zuiderwijk (eds), Atlas of the Amphibians and Reptiles in Europe, 2nd ed. Museum National d’Histoire Naturelle, Paris: 148–149.

    Google Scholar 

  • Hayes, T. B., P. Falso, S. Gallipeau & M. Stice, 2010. The cause of global amphibian declines: a developmental endocrinologist’s perspective. Journal of Experimental Biology 213: 921–933.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hero, J. M., 1989. A simple code for toe clipping anurans. Herpetological Review 20: 66–67.

    Google Scholar 

  • Holenweg Peter, A. K., 2001. Dispersal rates and distances in adult water frogs, Rana lessonae, R. ridibunda and their hybridogenetic associate R. esculenta. Herpetologica 57: 449–460.

    Google Scholar 

  • Holenweg Peter, A. K., H. U. Reyer & G. Abt Tietje, 2002. Species and sex ratio differences in mixed populations of hybridogenetic water frogs: the influence of pond features. Ecoscience 9: 1–11.

    Google Scholar 

  • Holenweg, A. K. & H. U. Reyer, 2000. Hibernation behavior of Rana lessonae and R. esculenta in their natural habitat. Oecologia 123: 41–47.

    Article  Google Scholar 

  • Jakob, C., G. Poizat, M. Veith, A. Seitz & A. J. Crivelli, 2003. Breeding phenology and larval distribution of amphibians in a Mediterranean pond network with unpredictable hydrology. Hydrobiologia 499: 51–61.

    Article  Google Scholar 

  • Lanza, B., S. Lotti & T. Catalani, 2006. Amphibia Anura donated by Benedetto Lanza to the Museo di Storia Naturale, University of Florence. Catalogue with morphological, taxonomic, biogeographical and biological data, plus an updating of the paper on Caudata. Atti Museo Civico di Storia Naturale di Trieste 52: 87–202.

    Google Scholar 

  • Leaper, R., J. Cooke, P. Trathan, K. Reid, V. Rowntree & R. Payne, 2006. Global climate drives southern right whale (Eubalaena australis) population dynamics. Biology Letters 2: 289–292.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ludovisi, A. & E. Gaino, 2010. Meteorological and water quality changes in Lake Trasimeno (Umbria, Italy) during the last fifty years. Journal of Limnology 69: 174–188.

    Article  Google Scholar 

  • Ludovisi, A., E. Gaino, M. Bellezza & S. Casadei, 2013. Impact of climate change on the hydrology of shallow Lake Trasimeno (Umbria, Italy): history, forecasting and management. Aquatic Ecosystem Health and Management 16: 190–197.

    CAS  Google Scholar 

  • MacDonald, D. D., C. G. Ingersoll & T. A. Berger, 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology 39: 20–31.

    Article  CAS  PubMed  Google Scholar 

  • Márquez-García, M., M. Correa-Solis, M. Sallaberry & M. A. Méndez, 2009. Effects of pond drying on morphological and life-history traits in the anuran Rhinella spinulosa (Anura: Bufonidae). Evolutionary Ecology Research 11: 803–815.

    Google Scholar 

  • McMenamin, S. K., E. A. Hadly & C. K. Wright, 2008. Climatic change and wetland desiccation cause amphibian decline in Yellowstone National Park. Proceeding of the National Academy of Science of the United States of America 105: 16988–16993.

    Article  CAS  Google Scholar 

  • Mosconi, G., I. Di Rosa, S. Bucci, L. Morosi, M. F. Franzoni, A. M. Polzonetti-Magni & R. Pascolini, 2005. Plasma sex steroid and thyroid hormones profile in male water frogs of the Rana esculenta complex from agricultural and pristine areas. General and Comparative Endocrinology 142: 318–324.

    Article  CAS  PubMed  Google Scholar 

  • Negovetic, S., B. R. Anholt, R. D. Semlitsch & H. U. Reyer, 2001. Specific responses of sexual and hybridogenetic European waterfrog tadpoles to temperature. Ecology 82: 766–774.

    Article  Google Scholar 

  • Pascolini, R., P. Daszak, A. A. Cunningham, S. Tei, D. Vagnetti, S. Bucci, A. Fagotti & I. Di Rosa, 2003. Parasitism by Dermocystidium ranae in a population of Rana esculenta complex in Central Italy and description of Amphibiocystidium n. gen. Diseases of Aquatic Organisms 56: 65–74.

    Article  CAS  PubMed  Google Scholar 

  • Pereira, C. N., I. Di Rosa, A. Fagotti, F. Simoncelli, R. Pascolini & L. Mendoza, 2005. The pathogen of frogs Amphibiocystidium ranae is a member of the order Dermocystida in the class Mesomycetozoea. Journal of Clinical Microbiology 43: 192–198.

    Article  PubMed Central  PubMed  Google Scholar 

  • Plénet, S., P. Joly, F. Hervant, E. Fromont & O. Grolet, 2005. Are hybridogenetic complexes structured by habitat in water frogs? Journal of Evolutionary Biology 18: 1575–1586.

    Article  PubMed  Google Scholar 

  • Pounds, J. A., M. P. L. Fogden & J. H. Campbell, 1999. Biological response to climate change on a tropical mountain. Nature 398: 611–615.

    Article  CAS  Google Scholar 

  • Ragghianti, M., F. Guerrini, S. Bucci, G. Mancino, H. Hotz, T. Uzzell & G. D. Guex, 1995. Molecular characterization of a centromeric satellite DNA in the hemiclonal hybrid frog Rana esculenta and its parental species. Chromosome Research 3: 497–506.

    Article  CAS  PubMed  Google Scholar 

  • Rastogi, R. K., I. Izzo-Vitiello, M. Di Meglio, L. Di Matteo, R. Franzese, M. G. Di Costanzo, S. Minucci, L. Iela & G. Chieffi, 1983. Ovarian activity and reproduction in the frog, Rana esculenta. Journal of Zoology 200: 233–247.

    Article  Google Scholar 

  • Reading, C. J., 2007. Linking global warming to amphibian declines through its effects on female body condition and survivorship. Oecologia 151: 125–131.

    Article  CAS  PubMed  Google Scholar 

  • Scheele, B. C., D. A. Driscoll, J. Fischer & D. A. Hunter, 2012. Decline of an endangered amphibian during an extreme climatic event. Ecosphere 3(11): 101.

    Article  Google Scholar 

  • Semlitsch, R. D., 1987. Relationship of pond drying to the reproductive success of the salamander Ambystoma talpoideum. Copeia 1987: 61–69.

    Article  Google Scholar 

  • Semlitsch, R. D., 1993. Asymmetric competition in mixed populations of tadpoles of the hybridogenetic Rana esculenta complex. Evolution 47: 510–519.

    Article  Google Scholar 

  • Semlitsch, R. D. & H. U. Reyer, 1992. Performance of tadpoles from the hybridogenetic Rana esculenta complex: interactions with pond drying and interspecific competition. Evolution 46: 665–676.

    Article  Google Scholar 

  • Semlitsch, R. D., H. Hotz & G. D. Guex, 1997. Competition among tadpoles of coexisting hemiclones of hybridogenetic Rana esculenta: support for the frozen niche variation model. Evolution 51: 1249–1261.

    Article  Google Scholar 

  • Simoncelli, F., A. Fagotti, R. Dall’Olio, D. Vagnetti, R. Pascolini & I. Di Rosa, 2005. Evidence of Batrachochytrium dendrobatidis infection in water frogs of the Rana esculenta complex in Central Italy. EcoHealth 2: 307–312.

    Article  Google Scholar 

  • Stott, P. A., D. A. Stone & M. R. Allen, 2004. Human contribution to the European heatwave of 2003. Nature 432: 610–614.

    Article  CAS  PubMed  Google Scholar 

  • Tattersall, G. J. & G. R. Ultsch, 2008. Physiological ecology of aquatic overwintering in Ranid frogs. Biological Reviews 83: 119–140.

    Article  PubMed  Google Scholar 

  • Titon Jr, B., C. A. Navas, J. Jim & F. R. Gomes, 2010. Water balance and locomotor performance in three species of neotropical toads that differ in geographical distribution. Comparative Biochemistry and Physiology, Part A 156: 129–135.

    Article  Google Scholar 

  • Todd, B. D. & C. T. Winne, 2006. Ontogenetic and interspecific variation in timing of movement and responses to climatic factors during migrations by pond-breeding amphibians. Canadian Journal of Zoology 84: 715–722.

    Article  Google Scholar 

  • Uzzell, T. & L. Berger, 1975. Electrophoretic phenotypes of Rana ridibunda, Rana lessonae, and their hybridogenetic associate, Rana esculenta. Proceedings of the Academy of Natural Sciences of Philadelphia 127: 13–24.

    Google Scholar 

  • Uzzell, T. & H. Hotz, 1979. Electrophoretic and morphological evidence for two forms of green frogs (Rana esculenta complex) in peninsular Italy (Amphibia, Salientia). Mitteilungen aus dem Zoologischen Museum in Berlin 55: 13–27.

    Google Scholar 

  • Walls, S. C., W. J. Barichivich & M. E. Brown, 2013. Drought, deluge and declines: the impact of precipitation extremes on amphibians in a changing climate. Biology 2: 399–418.

    Article  Google Scholar 

  • Wang, J., 2013. Time delay correlation. In Dubitzky, W., O. Wolkenhauer, H. Yokota & K. H. Cho (eds), Encyclopedia of Systems Biology. Springer, Berlin.

  • Whitehead, H., 1997. Sea surface temperature and the abundance of sperm whale calves off the Galapagos Islands: implications for the effects of global warming. Report International Whaling Commission 47: 941–944.

    Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. L. Convito, Dr. C. Romano, and Dr. C. Spilinga for their valuable contribution in field sampling, Dr. S. Bucci and Dr. M. Ragghianti for supplying the molecular marker RrS1, and Dr. N. Hutchinson for linguistic advice. We are very grateful to the Regione Umbria, Provincia di Perugia, and the Hydrogate project of the Università degli Studi di Perugia for making meteorological and hydrological databases accessible. We thank Cooperativa “L’Alzavola” for access to LT2 site. R. Rossi was supported by a grant research funded by the Regione Umbria with the financing of the Fondo Sociale Europeo. The work was financially supported by the Provincia di Perugia, Agenzia Regionale Umbra per lo Sviluppo e l’Innovazione in Agricoltura and Fondazione Cassa di Risparmio di Perugia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ines Di Rosa.

Additional information

Handling editor: Lee B. Kats

Alessandro Ludovisi and Roberta Rossi have contributed equally to this study.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ludovisi, A., Rossi, R., Paracucchi, R. et al. The delayed effects of meteorological changes on the water frogs in Central Italy. Hydrobiologia 730, 139–152 (2014). https://doi.org/10.1007/s10750-014-1828-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-1828-2

Keywords

Navigation