The temperature–productivity squeeze: constraints on brook trout growth along an Appalachian river continuum

Abstract

We tested the hypothesis that brook trout growth rates are controlled by a complex interaction of food availability, water temperature, and competitor density. We quantified trout diet, growth, and consumption in small headwater tributaries characterized as cold with low food and high trout density, larger tributaries characterized as cold with moderate food and moderate trout density, and large main stems characterized as warm with high food and low trout density. Brook trout consumption was highest in the main stem where diets shifted from insects in headwaters to fishes and crayfish in larger streams. Despite high water temperatures, trout growth rates also were consistently highest in the main stem, likely due to competitively dominant trout monopolizing thermal refugia. Temporal changes in trout density had a direct negative effect on brook trout growth rates. Our results suggest that competition for food constrains brook trout growth in small streams, but access to thermal refugia in productive main stem habitats enables dominant trout to supplement growth at a watershed scale. Brook trout conservation in this region should seek to relieve the “temperature–productivity squeeze,” whereby brook trout productivity is constrained by access to habitats that provide both suitable water temperature and sufficient prey.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Amundsen, P. A. & H. M. Gabler, 2008. Food consumption and growth of Atlantic salmon Salmo salar parr in sub-Arctic rivers: empirical support for food limitation and competition. Journal of Fish Biology 73: 250–261.

    Article  Google Scholar 

  2. Anderson, R. O. & R. M. Neumann, 1996. Length, weight, and associated structural indices. In Murphy, B. R. & D. W. Willis (eds), Fisheries Techniques, 2nd ed. American Fisheries Society, Bethesda, MD: 447–482.

    Google Scholar 

  3. Bates, B. C., Z. Q. Kundzewicz, S. Wu & J. P. Palutikof (eds), 2008. Climate Change and Water. Technical Paper of the Intergovernmental Panel on Climate Change. IPCC Secretariat, Geneva.

  4. Benke, A. C., A. D. Huryn, L. A. Smock & J. B. Wallace, 1999. Length–mass relationships for freshwater macroinvertebrates in North America with particular reference to the southeastern United States. Journal of the North American Benthological Society 18: 308–343.

    Article  Google Scholar 

  5. Bopp, J., 2002. The Combined Effects of Water Chemistry, Canopy Cover, and Basin Area on Benthic Macroinvertebrates along a Central Appalachian Stream Continuum. West Virginia University, Morgantown.

    Google Scholar 

  6. Borror, D. J., C. A. Triplehorn & N. F. Johnson, 1989. An Introduction to the Study of Insects, 6th ed. Saunders College Publishers, Ft. Worth, TX.

    Google Scholar 

  7. Breau, C., R. A. Cunjak & G. Bremset, 2007. Age-specific aggregation of wild juvenile Atlantic salmon Salmo salar at cool water sources during high temperature events. Journal of Fish Biology 71: 1179–1191.

    Article  Google Scholar 

  8. Carlson, S. M., A. P. Hendry & B. H. Letcher, 2007. Growth rate differences between resident native brook trout and non-native brown trout. Journal of Fish Biology 71: 1430–1447.

    Article  Google Scholar 

  9. Chaloner, D. T., M. S. Wipfli & J. P. Caouette, 2002. Mass loss and macroinvertebrate colonisation of Pacific salmon carcasses in southeastern Alaskan streams. Freshwater Biology 47: 263–273.

    Article  Google Scholar 

  10. Cummins, K. W. & J. C. Wuycheck, 1971. Caloric equivalents for investigations in ecological energetics. International Association of Theoretical and Applied Limnology 18: 1–158.

    Google Scholar 

  11. Daufresne, M. & P. Boet, 2007. Climate change impacts on structure and diversity of fish communities in rivers. Global Change Biology 13: 2467–2478.

    Article  Google Scholar 

  12. Dunham, J. B. & G. L. Vinyard, 1997. Relationships between body mass, population density, and the self-thinning rule in stream-living salmonids. Canadian Journal of Fisheries and Aquatic Sciences 54: 1025–1030.

    Article  Google Scholar 

  13. Ensign, W. E., R. J. Strange & S. E. Moore, 1990. Summer food limitation reduced brook and rainbow trout biomass in a southern Appalachian stream. Transactions of the American Fisheries Society 119: 894–901.

    Article  Google Scholar 

  14. Fausch, K. D., C. E. Torgersen, C. V. Baxter & H. W. Li, 2002. Landscape to riverscapes: bridging the gap between research and conservation of stream fishes. Bioscience 52: 483–498.

    Article  Google Scholar 

  15. Flebbe, P. A., L. D. Roghair & J. L. Bruggink, 2006. Spatial modeling to project Southern Appalachian trout distribution in a warmer climate. Transactions of the American Fisheries Society 135: 1371–1382.

    Article  Google Scholar 

  16. Fretwell, S. D. & H. L. Lucas Jr, 1970. On territorial behavior and other factors influencing habitat distribution in birds. 1. Theoretical development. Acta Biotheoretica 1970: 16–36.

    Google Scholar 

  17. Freund, J. G. & J. T. Petty, 2007. Response of fish and macroinvertebrate bioassessment indices to water chemistry in a mined Appalachian watershed. Environmental Management 39: 707–720.

    PubMed  Article  Google Scholar 

  18. Goniea, T. M., M. L. Keefer, T. C. Bjornn, C. A. Peery, D. H. Bennet & L. C. Stuehrenberg, 2006. Behavioral thermoregulations and slowed migration by adult fall Chinook salmon in response to high Columbia River water temperatures. Transactions of the American Fisheries Society 135: 408–419.

    Article  Google Scholar 

  19. Gowan, C. & K. D. Fausch, 2002. Why do foraging stream salmonids move during summer? Environmental Biology of Fishes 64: 139–153.

    Article  Google Scholar 

  20. Gross, M. R., R. M. Coleman & R. M. McDowall, 1988. Aquatic productivity and the evolution of diadromous fish migration. Science 239: 1291–1293.

    CAS  PubMed  Article  Google Scholar 

  21. Grossman, G. D., R. E. Ratajczak, C. M. Wagner & J. T. Petty, 2010. Dynamics and regulation of the southern brook trout (Salvelinus fontinalis) population in an Appalachian stream. Freshwater Biology 55: 1494–1508.

    Article  Google Scholar 

  22. Grossman, G. D., A. Nuhfer, T. Zorn, G. Sundin & G. Alexander, 2012. Population regulation of brook trout (Salvelinus fontinalis) in Hunt Creek, Michigan: a 50-year study. Freshwater Biology 57: 1434–1448.

    Article  Google Scholar 

  23. Haak, A. L., J. E. Williams, H. M. Neville, D. C. Dauwalter & W. T. Colyer, 2010. Conserving peripheral trout populations: the values and risks of life on the edge. Fisheries 35: 530–549.

    Article  Google Scholar 

  24. Hartman, K. J. & K. M. Cox, 2008. Refinement and testing of a brook trout bioenergetics model. Transactions of the American Fisheries Society 137: 357–363.

    Article  Google Scholar 

  25. Hartman, K. J. & J. A. Sweka, 2001. Development of a bioenergetics model for Appalachian brook trout. Proceedings of the Southeastern Association of Fish and Wildlife Agencies 55: 38–51.

    Google Scholar 

  26. Hense, Z., R. W. Martin & J. T. Petty, 2010. Electrofishing capture efficiencies for common stream fish species to support watershed-scale studies in the central Appalachians. North American Journal of Fisheries Management 30: 1041–1050.

    Article  Google Scholar 

  27. Hilderbrand, R. H. & J. L. Kershner, 2004. Are there differences in growth and condition between mobile and resident cutthroat trout? Transactions of the American Fisheries Society 133: 1042–1046.

    Article  Google Scholar 

  28. Hill, D. K. & J. J. Magnuson, 1990. Potential effects of global climate warming on the growth and prey consumption of great lakes fish. Transactions of the American Fisheries Society 119: 265–275.

    Article  Google Scholar 

  29. Hill, J. & G. D. Grossman, 1993. An energetic model of microhabitat use for rainbow trout and rosyside dace. Ecology 74: 685–698.

    Article  Google Scholar 

  30. Hudy, M., T. M. Theiling, N. Gillespie & E. P. Smith, 2008. Distribution, status, and land use characteristics of subwatersheds within the native range of brook trout in the eastern United States. North American Journal of Fisheries Management 28: 1069–1085.

    Article  Google Scholar 

  31. Hughes, N. F., 1998. A model of habitat selection by drift-feeding stream salmonids at different scales. Ecology 79: 281–294.

    Article  Google Scholar 

  32. Hughes, N. F. & L. M. Dill, 1990. Position choice by drift-feeding salmonids: model and test for arctic grayling (Thymallus arcticus) in subarctic mountain streams, interior Alaska. Canadian Journal of Fisheries and Aquatic Sciences 47: 2039–2047.

    Article  Google Scholar 

  33. Isaak, D. J., C. H. Luce, B. E. Rieman, D. E. Nagel, E. E. Peterson, D. L. Horan, S. Parkes & G. L. Chandler, 2010. Effect of climate change and wildfire on stream temperatures and salmonid thermal habitat in a mountain river network. Ecological Applications 20: 1350–1371.

    PubMed  Article  Google Scholar 

  34. Jensen, A. J., 1990. Growth of young migratory brown trout Salmo trutta correlated with water temperature in Norwegian rivers. Journal of Animal Ecology 59: 603–614.

    Article  Google Scholar 

  35. Keefer, M. L., C. A. Peery & B. High, 2009. Behavioral thermoregulation and associated mortality trade-offs in migrating adult steelhead (Oncorhynchus mykiss): variability among sympatric populations. Canadian Journal of Fisheries and Aquatic Sciences 66: 1734–1747.

    Article  Google Scholar 

  36. Letcher, B. H., K. H. Nislow, J. A. Coombs, M. J. O’Donnell & T. L. Dubreuil, 2007. Population response to habitat fragmentation in a stream-dwelling brook trout population. PLoS One 2(11): e1139.

    PubMed Central  PubMed  Article  Google Scholar 

  37. McCafferty, W. P. & A. V. Provonsha, 1998. Aquatic Entomology: The Fisherman’s and Ecologist’s Illustrated Guide to Insects and Their Relatives. Jones and Bartlett, Boston.

    Google Scholar 

  38. McClurg, S. E., J. T. Petty, P. M. Mazik & J. L. Clayton, 2007. Stream ecosystem response to limestone treatment in acid impacted watersheds of the Allegheny Plateau. Ecological Applications 17: 1087–1104.

    PubMed  Article  Google Scholar 

  39. Merritt, R. W. & K. W. Cummins, 1996. An Introduction to the Aquatic Insects of North America, 3rd ed. Kendall and Hunt, Dubuque, IA.

    Google Scholar 

  40. Morinville, G. R. & J. B. Rasmussen, 2003. Early juvenile bioenergetic differences between anadromous and resident brook trout (Salvelinus fontinalis). Canadian Journal of Fisheries and Aquatic Sciences 60: 401–410.

    Article  Google Scholar 

  41. Petty, J. T. & G. D. Grossman, 2010. Giving-up densities and ideal pre-emptive patch use in a predatory benthic stream fish. Freshwater Biology 55: 780–793.

    Article  Google Scholar 

  42. Petty, J. T. & E. P. Merriam, 2012. Brook trout restoration. Nature Education Knowledge 3:17. http://www.nature.com/scitable/knowledge/library/brook-trout-restoration-83031062.

  43. Petty, J. T. & D. Thorne, 2005. An ecologically based approach to identifying restoration priorities in an acid impacted watershed. Restoration Ecology 13: 348–357.

    Article  Google Scholar 

  44. Petty, J. T., J. Freund, P. Lamothe & P. Mazik, 2001. Quantifying instream habitat in the upper Shavers Fork basin at multiple spatial scales. Proceedings of the Southeastern association of Fish and Wildlife Agencies 55: 81–94.

    Google Scholar 

  45. Petty, J. T., P. J. Lamothe & P. M. Mazik, 2005. Spatial and seasonal dynamics of brook trout populations inhabiting a central Appalachian watershed. Transactions of the American Fisheries Society 134: 572–587.

    Article  Google Scholar 

  46. Petty, J. T., J. L. Hansbarger, B. M. Huntsman & P. M. Mazik, 2012. Brook trout movement in response to temperature, flow, and thermal refugia within a complex Appalachian riverscape. Transactions of the American Fisheries Society 141: 1060–1073.

    Article  Google Scholar 

  47. Poff, N. L. & A. D. Huryn, 1998. Multi-scale determinants of secondary production in Atlantic salmon (Salmo salar) streams. Canadian Journal of Fisheries and Aquatic Sciences 55: 201–217.

    Article  Google Scholar 

  48. Poplar-Jeffers, I. O., J. T. Petty, J. T. Anderson, S. J. Kite, M. P. Strager & R. H. Fortney, 2009. Culvert replacement and stream habitat restoration: Implications from brook trout management in an Appalachian watershed, U.S.A. Restoration Ecology 17: 404–413.

    Article  Google Scholar 

  49. Pullium, R. H. & B. J. Danielson, 1991. Sources, sinks, and habitat selection: a landscape perspective on population dynamics. The American Naturalist 137: S50–S66.

    Article  Google Scholar 

  50. Rieman, B. & D. Isaak, 2010. Climate Change, Aquatic Ecosystems and Fishes in the Rocky Mountain West: Implications and Alternatives for Management. USDA Forest Service, Rocky Mountain Research Station, GTR-RMRS-250, Fort Collins, CO.

    Google Scholar 

  51. Rieman, B. E., D. Isaak, S. Adams, D. Horan, D. Nagel, C. Luce & D. Myers, 2007. Anticipated climate warming effects on bull trout habitats and populations across the interior Columbia River basin. Transactions of the American Fisheries Society 136: 1552–1565.

    Article  Google Scholar 

  52. Ries, R. D. & S. A. Perry, 1995. Potential effects of global climate warming on brook trout growth and prey consumption in central Appalachian streams, USA. Climate Research 5: 197–206.

    Article  Google Scholar 

  53. Robillard, M. M., R. L. McLaughlin & R. W. Mackereth, 2011. Diversity in habitat use and trophic ecology of brook trout in Lake Superior and tributary streams revealed through stable isotopes. Transactions of the American Fisheries Society 140: 943–953.

    Article  Google Scholar 

  54. Sabo, J. L., J. L. Bastow & M. E. Power, 2002. Length-mass relationships for adult aquatic and terrestrial invertebrates in a California watershed. Journal of the North American Benthological Society 21: 336–343.

    Article  Google Scholar 

  55. Sample, B. E., R. J. Cooper, R. D. Greer & R. C. Whitmore, 1993. Estimation of insect biomass by length and width. American Midland Naturalist 129: 234–240.

    Article  Google Scholar 

  56. Smock, L. A., 1980. Relationships between body size and biomass of aquatic insects. Freshwater Biology 10: 375–383.

    Article  Google Scholar 

  57. Sotiropoulos, J. C., K. H. Nislow & M. R. Ross, 2006. Brook trout, Salvelinus fontinalis, microhabitat selection and diet under low summer stream flows. Fisheries Management and Ecology 13: 149–155.

    Article  Google Scholar 

  58. Sweka, J. A., 2003. Aquatic-Terrestrial Linkages in Appalachian Streams: Influence of Riparian Inputs on Stream Habitat, Brook Trout Populations, and Trophic Dynamics. West Virginia University, Morgantown.

    Google Scholar 

  59. Sweka, J. A. & K. J. Hartman, 2008. Contribution of terrestrial invertebrates to yearly brook trout prey consumption and growth. Transactions of the American Fisheries Society 137: 224–235.

    Article  Google Scholar 

  60. Thompson, A. R., J. T. Petty & G. D. Grossman, 2001. Multi-scale effects of resource patchiness on foraging behaviour and habitat use by longnose dace, Rhinichthys cataractae. Freshwater Biology 46: 145–160.

    Article  Google Scholar 

  61. Thorp, J. H. & A. P. Covich, 2001. Ecology and Classification of North American Freshwater Invertebrates, 2nd ed. Academic Press, San Diego, CA.

    Google Scholar 

  62. Torgersen, C. E., D. M. Price, H. W. Li & B. A. McIntosh, 1999. Multiscale thermal refugia and stream habitat associations of Chinook salmon in northeastern Oregon. Ecological Applications 9: 301–319.

    Article  Google Scholar 

  63. Utz, R. M. & K. J. Hartman, 2006. Temporal and spatial variation in the energy intake of a brook trout (Salvelinus fontinalis) population in an Appalachian watershed. Canadian Journal of Fisheries and Aquatic Sciences 63: 2675–2686.

    Article  Google Scholar 

  64. Utz, R. M. & K. J. Hartman, 2007. Identification of critical prey items to Appalachian brook trout (Salvelinus fontinalis) with emphasis on terrestrial organisms. Hydrobiologica 575: 259–270.

    Article  Google Scholar 

  65. Utz, R. M. & K. J. Hartman, 2009. Density-dependent individual growth and size dynamics of central Appalachian brook trout (Salvelinus fontinalis). Canadian Journal of Fisheries and Aquatic Sciences 66: 1072–1080.

    Article  Google Scholar 

  66. Warren, D. R., J. M. Robinson, D. C. Josephson, D. R. Sheldon & C. E. Kraft, 2012. Elevated summer temperatures delay spawning and reduce redd construction for resident brook trout (Salvelinus fontinalis). Global Change Biology 18: 1804–1811.

    Article  Google Scholar 

  67. Webster, J. J. & K. J. Hartman, 2005. The role of terrestrial invertebrates in allopatric brook trout headwater streams in the central Appalachian mountains. Journal of Freshwater Ecology 20: 101–107.

    Article  Google Scholar 

  68. Wenger, S. J., D. J. Isaak, C. H. Luce, H. M. Neville, K. D. Fausch, J. B. Dunham, D. C. Dauwalter, M. K. Young, M. M. Elsner, B. E. Rieman, A. F. Hamlet & J. E. Williams, 2011. Flow regime, temperature, and biotic interactions drive differential declines of trout species under climate change PNAS 108: 14175–14180.

  69. Wipfli, M. S., 1997. Terrestrial invertebrates as salmonid prey and nitrogen sources in streams: contrasting old-growth and young-growth riparian forests in southeastern Alaska, U.S.A. Canadian Journal of Fisheries and Aquatic Sciences 54: 1259–1269.

    Article  Google Scholar 

  70. Wipfli, M. S., J. Hudson & J. Caouette, 2003. Marine subsidies in freshwater ecosystems: Salmon carcasses increase the growth rates of stream-resident salmonids. Transactions of the American Fisheries Society 132: 371–381.

    Article  Google Scholar 

  71. Xu, C. L., B. H. Letcher & K. H. Nislow, 2010. Context-specific influence of water temperature on brook trout growth rates in the field. Freshwater Biology 55: 2253–2264.

    Google Scholar 

  72. Young, R. G., J. Wilkinson, J. Hay & J. W. Hayes, 2010. Movement and mortality of adult brown trout in the Motupiko River, New Zealand: effects of water temperature, flow, and flooding. Transactions of the American Fisheries Society 139: 137–146.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the U.S. Geological Survey and the U.S. Fish and Wildlife Service for financial support for this study. Comments from Kyle Hartman greatly improved earlier versions of this manuscript. We also thank Mike Shingleton and Steve Brown from the WVDNR for sharing their expertise and ideas. As always, we are grateful to Becky Nestor for her administrative support of this project. Use of trade names does not imply endorsement by the U.S. Government.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Todd Petty.

Additional information

Handling editor: M. Power

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Petty, J.T., Thorne, D., Huntsman, B.M. et al. The temperature–productivity squeeze: constraints on brook trout growth along an Appalachian river continuum. Hydrobiologia 727, 151–166 (2014). https://doi.org/10.1007/s10750-013-1794-0

Download citation

Keywords

  • Brook trout
  • Growth and consumption
  • Diet
  • Watershed scale
  • Density dependence
  • Competition
  • Thermal refugia