Skip to main content

Small ones and big ones: cross-taxon congruence reflects organism body size in ombrotrophic bogs

Abstract

The monitoring of currently changing bogs has triggered a need to improve our understanding of correlations between different taxa. We analysed the cross-taxon congruence of six contrasting groups of organisms (vascular plants, bryophytes, fungi, diatoms, desmids and testate amoebae) in permanent plots located in differently polluted summit ombrotrophic bogs in two regions of the Czech Republic. In the suboceanic region, whose bogs are more uniformly polluted, the congruence was generally lower. Vascular plants, bryophytes and fungi showed the same gradient structure, while three groups of protists behaved rather independently of one another. In the subcontinental region where recent aerial liming created a new pH gradient, the congruence was generally higher. The main difference among different taxa corresponded clearly with body size and life span (microorganisms versus macroorganisms), conforming the previous results of a faster response of microorganisms to the artificially created pH gradient. Generally, vascular plants, bryophytes and fungi provided similar information, while diatoms behaved most independently. The major division among the study taxa coincided with body size rather than with nutrition or propagule size.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Allen, A. P., T. R. Whittier, D. P. Larsen, P. R. Kaufman, R. J. O’Connor, R. M. Hughes, R. S. Stemberger, S. S. Dixit, R. O. Brinkhurst, A. T. Herlihy & R. G. Paulsen, 1999. Concordance of taxonomic richness patterns across multiple assemblages: effects of scale, body size and land use. Canadian Journal of Fisheries and Aquatic Science 56: 2029–2040.

    Article  Google Scholar 

  2. Anderson, M. J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecolology 26: 32–46.

    Google Scholar 

  3. Arnolds, E., 1981. Ecology and Coenology of Macrofungi in Grasslands and Moist Heathlands in Drenthe, the Netherlands. Part 1. Introduction and Synecology. J. Cramer, Vaduz.

  4. Arnolds, E., 1991. Decline of ectomycorrhizal fungi in Europe. Agriculture, Ecosystems and Environment 35: 209–244.

    Article  Google Scholar 

  5. Bagella, S., S. Gascón, M. C. Caria, J. Sala & D. Boix, 2011. Cross-taxon congruence in Mediterranean temporary wetlands: vascular plants, crustaceans, and coleopterans. Community Ecology 12: 40–50.

    Article  Google Scholar 

  6. Bhattacharyya, P. & B. E. Volcani, 1980. Sodium-dependent silicate transport in the apochlorotic marine diatom Nitzschia alba. Proceedings of the National Academy of Sciences of the United States of America 77: 6386–6390.

  7. Boullemant, A., S. Le Faucheur, C. Fortin & P. G. C. Campbell, 2011. Uptake of lipophilic cadmium complexes by three green algae: influence of humic acid and its pH dependence. Journal of Phycology 47: 784–791.

    CAS  Article  Google Scholar 

  8. Bowman, M. F., R. Ingram, R. A. Reid, K. M. Somers, N. D. Yan, A. M. Paterson, G. E. Morgan & J. M. Gunn, 2008. Temporal and spatial concordance in community composition of phytoplankton, zooplankton, macroinvertebrate, crayfish, and fish on the Precambrian Shield. Canadian Journal of Fisheries and Aquatic Science 65: 919–932.

    Article  Google Scholar 

  9. Bragazza, L. & R. Gerdol, 2002. Are nutrient availability and acidity-alkalinity gradients related in Sphagnum-dominated peatlands? Journal of Vegetation Science 13: 473–482.

    Article  Google Scholar 

  10. Bragazza, L., T. Tahvanainen, L. Kutnar, H. Rydin, J. Limpens, M. Hájek, P. Grosvernier, T. Hájek, P. Hájková, I. Hansen, P. Iacumin & R. Gerdol, 2004. Nutritional constraints in ombrotrophic Sphagnum plants under increasing atmospheric nitrogen deposition in Europe. New Phytologist 163: 609–616.

    Article  Google Scholar 

  11. Brown, N., S. Bhagwat & S. Watkinson, 2003. Macrofungal diversity in fragmented and disturbed forests of the Western Ghats of India. Journal of Applied Ecology 43: 11–17.

    Article  Google Scholar 

  12. Carlson, M. L., L. Flagstad, F. Gillet & E. A. D. Mitchell, 2010. Community development along a proglacial chronosequence: are aboveground and belowground community structure controlled more by biotic than abiotic factors? Journal of Ecology 98: 1084–1095.

    Article  Google Scholar 

  13. Chiarucci, A., F. D′Auria, V. de Dominicis, A. Laganà, C. Perini & E. Salerni, 2005. Using vascular plants as a surrogate taxon to maximize fungal species richness in reserve design. Conservation Biology 19: 1644–1652.

    Article  Google Scholar 

  14. Dudová, L., P. Hájková, H. Buchtová & V. Opravilová, 2013. Formation, succession and landscape history of Central-European summit raised bogs: a multiproxy study from the Hrubý Jeseník Mountains. The Holocene 23: 230–242.

    Article  Google Scholar 

  15. Fattorini, S., R. L. H. Dennis & L. M. Cook, 2011. Conserving organisms over large regions requires multi-taxa indicators: one taxon’s diversity-vacant area is another taxon’s diversity zone. Biological Conservation 144: 1690–1701.

    Article  Google Scholar 

  16. Fattorini, S., R. L. H. Dennis & L. M. Cook, 2012. Use of cross-taxon congruence for hotspot identification at a regional scale. PLoS ONE 7(6): e40018. doi:10.1371/journal.pone.0040018.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  17. Foissner, W., 2008. Protist diversity and distribution: some basic considerations. Biodiversity and Conservation 17: 235–242.

    Article  Google Scholar 

  18. Fránková, M., J. Bojková, A. Poulíčková & M. Hájek, 2009. The structure and species richness of the diatom assemblages of the Western Carpathian spring fens along the gradient of mineral richness. Fottea 9: 355–368.

    Google Scholar 

  19. Gilbert, D., C. Amblard, G. Bourdier & A. J. Francez, 1998. The microbial loop at the surface of a peatland: structure, function, and impact of nutrient input. Microbial Ecology 35: 83–93.

    CAS  PubMed  Article  Google Scholar 

  20. Gioria, M., A. Schaffers, G. Bacaro & J. Feehan, 2010. Predicting the conservation value of farmland ponds: use of vascular plants as a surrogate group. Biological Conservation 143: 1125–1133.

    Article  Google Scholar 

  21. Gioria, M., G. Bacaro & J. Feehan, 2011. Evaluating and interpreting cross-taxon congruence: potential pitfalls and solutions. Acta Oecologica 37: 187–194.

    Article  Google Scholar 

  22. Hájek, M., M. Horsák, P. Hájková & D. Dítě, 2006. Habitat diversity of central European fens in relation to environmental gradients and an effort to standardise fen terminology in ecological studies. Perspectives in Plant Ecology, Evolution and Systematics 8: 97–114.

    Article  Google Scholar 

  23. Hájek, M., J. Roleček, K. Cottenie, K. Kintrová, M. Horsák, A. Poulíčková, P. Hájková, M. Fránková & D. Dítě, 2011. Environmental and spatial controls of biotic assemblages in a discrete semi-terrestrial habitat: comparison of organisms with different dispersal abilities sampled in the same plots. Journal of Biogeography 38: 1683–1693.

    Article  Google Scholar 

  24. Hájková, P., M. Hájek, K. Rybníček, M. Jiroušek, L. Tichý, Š. Králová & E. Mikulášková, 2011a. Long-term vegetation changes in bogs exposed to high atmospheric deposition, aerial liming and climate fluctuation. Journal of Vegetation Science 22: 891–904.

    Article  Google Scholar 

  25. Hájková, P., J. Bojková, M. Fránková, V. Opravilová, M. Hájek, K. Kintrová & M. Horsák, 2011b. Disentangling the effects of water chemistry and substratum structure on moss-dwelling unicellular and multicellular micro-organisms in spring-fens. Journal of Limnology 70(Suppl. 1): 54–64.

    Google Scholar 

  26. Heino, J., 2010. Are indicator groups and cross-taxon congruence useful for predicting biodiversity in aquatic ecosystems? Ecological Indicators 10: 112–117.

    Article  Google Scholar 

  27. Heino, J., K. T. Tolonen, J. Kotanen & L. Paasivirta, 2009. Indicator groups and congruence of assemblage similarity, species richness and environmental relationships in littoral macroinvertebrates. Biodiversity and Conservation 18: 3085–3098.

    Article  Google Scholar 

  28. Holec, J., 2006. Role a postavení hub (makromycetů) v ekosystémech. In Holec, J. & M. Beran (eds), Červený seznam hub (macromycetů) České republiky. Příroda 24: 8–16.

  29. Horner-Devine, M. C., J. M. Silver, M. A. Leibold, B. J. M. Bohannan, R. K. Colwell, J. A. Fuhrman, J. L. Green, C. R. Kuske, J. B. H. Martiny, G. Muyzer, L. Øvreas, A.-L. Reysenbach & V. H. Smith, 2008. A comparison of taxon co-occurrence patterns for macro- and microorganisms. Ecology 88: 1345–1353.

    Google Scholar 

  30. Horsák, M. & M. Hájek, 2003. Composition and species richness of molluscan communities in relation to vegetation and water chemistry in the western Carpathian spring fens: the poor–rich gradient. Journal of Molluscan Studies 69: 349–357.

    Google Scholar 

  31. Horsák, M., M. Hájek, D. Spitale, P. Hájková, D. Dítě & J. C. Nekola, 2012. The age of island-like habitats impacts habitat specialist species richness. Ecology 93: 1106–1114.

    PubMed  Article  Google Scholar 

  32. Jiménez-Alfaro, B., E. Fernández-Pascual & T. E. Díaz González, 2012. Diversity of rich fen vegetation and related plant specialists in mountain refugia of the Iberian Peninsula. Folia Geobotanica 47: 403–419.

    Article  Google Scholar 

  33. Jiroušek, M., M. Hájek & L. Bragazza, 2011. Nutrient stoichiometry in Sphagnum along a nitrogen deposition gradient in highly polluted region of Central-East Europe. Environmental Pollution 159: 585–590.

    PubMed  Article  Google Scholar 

  34. Jiroušek, M., A. Poulíčková, K. Kintrová, V. Opravilová, P. Hájková, K. Rybníček, E. Mikulášková, M. Kočí, R. Hnilica, K. Bergová, Š. Králová & M. Hájek, 2013. Long-term and contemporary environmental conditions as determinants of the species composition of bog organisms. Freshwater Biology 58: 2196–2207.

    Article  Google Scholar 

  35. Johnson, R. K. & D. Hering, 2009. Response of taxonomic groups in streams to gradients in resource and habitat characteristics. Journal of Applied Ecology 46: 175–186.

    Article  Google Scholar 

  36. Lamentowicz, M., Ł. Lamentowicz, W. O. van der Knaap, M. Gąbka & E. A. D. Mitchell, 2010. Contrasting species–environment relationships in communities of testate amoebae, bryophytes and vascular plants along the fen–bog gradient. Microbial Ecology 59: 499–510.

    PubMed  Article  Google Scholar 

  37. Legendre, P. & M. J. Anderson, 1999. Distance-based redundancy analysis: Testing multispecies responses in multifactorial ecological experiments. Ecological Monographs 69: 1–24.

    Article  Google Scholar 

  38. Legendre, P. & L. Legendre, 1998. Numerical Ecology. Elsevier Science, Amsterdam.

    Google Scholar 

  39. Ligges, U. & M. Mächler, 2003. Scatterplot3d – an R Package for Visualizing Multivariate Data. Journal of Statistical Software 8: 1–20.

    Google Scholar 

  40. Malmer, N., B. M. Svensson & B. Wallén, 1994. Interactions between Sphagnum mosses and field layer vascular plants in the development of peat-forming systems. Folia Geobotanica et Phytotaxonomica 29: 483–496.

    Google Scholar 

  41. Margules, C. R. & R. L. Pressey, 2000. Systematic conservation planning. Nature 405: 243–253.

    CAS  PubMed  Article  Google Scholar 

  42. Marzin, A., V. Archaimbault, J. Belliard, C. Chauvin, F. Delmas & D. Pont, 2012. Ecological assessment of running waters: do macrophytes, macroinvertebrates, diatoms and fish show similar responses to human pressures? Ecological Indicators 23: 56–65.

    CAS  Article  Google Scholar 

  43. Mauquoy, D., P. D. M. Hughes & B. van Geel, 2010. A protocol for plant macrofossil analysis of peat deposits. Mires and Peat 7: 1–5.

    Google Scholar 

  44. McMullan-Fisher, S. J. M., J. B. Kirkpatricki, T. W. May & E. J. Pharo, 2010. Surrogates for macrofungi and mosses in reservation planning. Conservation Biology 24: 730–736.

    PubMed  Article  Google Scholar 

  45. Mitchell, E. A. D., M. Lamentowicz, W. O. van der Knaap, Ł. Lamentowicz, M. Gąbka & R. Payne, 2013. The performance of single- and multi-proxy transfer functions (testate amoebae, bryophytes, vascular plants) for reconstructing mire surface wetness and pH. Quaternary Research 79: 6–13.

    CAS  Article  Google Scholar 

  46. Nascimbene, J., D. Spitale, H. Thüs & M. Cantonati, 2011. Congruencies between photoautotrophic groups in springs of the Italian Alps: implications for conservation strategies. Journal of Limnology 70: 3–8.

    Article  Google Scholar 

  47. Neustupa, J., K. Černá & J. Šťastný, 2009. Diversity and morphological disparity of desmid assemblages in Central European peatlands. Hydrobiologia 630: 243–256.

    Article  Google Scholar 

  48. Ng, I. S. Y., C. M. Carr & K. Cottenie, 2009. Hierarchical zooplankton metacommunities: distinguishing between high and limiting dispersal mechanisms. Hydrobiologia 619: 133–143.

    Article  Google Scholar 

  49. Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H. Wagner, 2012. vegan: community Ecology Package. R package version 2.0-4 [http://CRAN.R-project.org/package=vegan].

  50. Öster, M., 2008. Low congruence between the diversity of Waxcap (Hygrocybe spp.) fungi and vascular plants in semi-natural grasslands. Basic and Applied Ecology 9: 514–522.

    Article  Google Scholar 

  51. Padial, A. A., S. A. J. Declerck, L. de Meester, C. C. Bonecker, F. A. Lansac-Tôha, L. C. Rodrigues, A. Takeda, S. Train, L. F. M. Velho & L. M. Bini, 2012. Evidence against the use of surrogates for biomonitoring of Neotropical floodplains. Freshwater Biology 57: 2411–2423.

    Article  Google Scholar 

  52. Peres-Neto, P. R. & D. A. Jackson, 2001. How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test. Oecologia 129: 169–178.

    Article  Google Scholar 

  53. Peter, M., F. Ayer & S. Egli, 2001. Nitrogen addition in a Norway spruce stand altered macromycete sporocarp production and below-ground ectomycorrhizal species composition. New Phytologist 149: 311–325.

    Article  Google Scholar 

  54. Poulíčková, A., K. Bergová, R. Hnilica & J. Neustupa, 2013a. Epibryic diatoms from ombrotrophic mires: diversity, gradients and indicating options. Nova Hedwigia 96: 351–365.

    Article  Google Scholar 

  55. Poulíčková, A., P. Hájková, K. Kintrová, R. Baťková, M. Czudková & M. Hájek, 2013b. Tracing decadal environmental change in ombrotrophic bogs using diatoms from herbarium collections and transfer functions. Environmental Pollution 179: 201–209.

    PubMed  Article  Google Scholar 

  56. Pouliot, R., L. Rochefort, E. Karofeld & C. Mercier, 2011. Initiation of Sphagnum moss hummocks in bogs and the presence of vascular plants: Is there a link? Acta Oecologica 37: 346–354.

    Article  Google Scholar 

  57. R Core Team, 2012. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna [http://www.R-project.org/].

  58. Rybníček, K., 1997. Monitorování vegetačních a stanovištních poměrů hřebenových rašelinišť Hrubého Jeseníku - výchozí stav. Příroda 11: 53–66.

    Google Scholar 

  59. Sætersdal, M., I. Gjerde, H. H. Blom, P. G. Ihlen, E. W. Myreseth, R. Pommeresche, J. Skartveit, T. Solhøyb & O. Aasc, 2003. Vascular plant as a surrogate species group in complementary site selection for bryophytes, macro-lichens, spiders, carabids, staphylinids, snails, and wood living polypore fungi in a northern forest. Biological Conservation 115: 21–31.

    Article  Google Scholar 

  60. Sánchez-Fernández, D., P. Abellán, A. Mellado, J. Velasco & A. Millán, 2006. Are water beetles good indicators of biodiversity in Mediterranean aquatic systems? The case of the Segura river basin (Spain). Biodiversity and Conservation 15: 4507–4520.

    Article  Google Scholar 

  61. Santi, S., S. Maccherini, D. Rocchini, I. Bonini, G. Brunialti, L. Favilli, C. Perini, F. Pezzo, S. Piazzini, E. Rota, E. Salerni & A. Chiarucci, 2010. Simple to sample: vascular plants as surrogate group in a nature reserve. Journal for Nature Conservation 18: 2–11.

    Article  Google Scholar 

  62. Schaffers, A. P., I. P. Raemakers, K. V. Sýkora & C. J. F. ter Braak, 2008. Arthropod assemblages are best predicted by plant species composition. Ecology 89: 782–794.

    PubMed  Article  Google Scholar 

  63. Sekulová, L., M. Hájek, P. Hájková, E. Mikulášková & Z. Fajmonová, 2011. Alpine wetlands in the West Carpathians: vegetation survey and vegetation–environment relationships. Preslia 83: 1–24.

    Google Scholar 

  64. Sekulová, L., M. Hájek, P. Hájková, E. Mikulášková, A. Buttler, V. Syrovátka & Z. Rozbrojová, 2012. Patterns of bryophyte and vascular plant richness in European subalpine springs. Plant Ecology 213: 237–249.

    Article  Google Scholar 

  65. Soudzilovskaia, N. A., B. J. Graae, J. C. Douma, O. Grau, A. Milbau, A. Shevtsova, L. Wolters & J. H. C. Cornelissen, 2011. How do bryophytes govern generative recruitment of vascular plants? New Phytologist 190: 1019–1031.

    PubMed  Article  Google Scholar 

  66. Spitale, D., A. Petraglia & M. Tomaselli, 2009. Structural equation model detects unexpected differences between bryophyte and vascular plant richness along multiple environmental gradients. Journal of Biogeography 36: 745–755.

    Article  Google Scholar 

  67. Spitale, D., M. Leira, N. Angeli & M. Cantonati, 2012. Environmental classification of springs of the Italian Alps and its consistency across multiple taxonomic groups. Freshwater Science 31: 563–574.

    Article  Google Scholar 

  68. Štěpánková, J., J. Vavrušková, P. Hašler, P. Mazalová & A. Poulíčková, 2008. Diversity and ecology of desmids of peat bogs in the Jizerské hory Mts. Biologia 63: 891–896.

    Google Scholar 

  69. Štěpánková, J., P. Hašler, M. Hladká & A. Poulíčková, 2012. Diversity and ecology of desmids of peat bogs in the Jeseníky Mts: spatial distribution, remarkable finds. Fottea 12: 108–128.

    Google Scholar 

  70. Tolonen, K. T., I. J. Holopainen, H. Hämäläinen, M. Rahkola-Sorsa, P. Ylöstalo, K. Mikkonen & J. Karjalainen, 2005. Littoral species diversity and biomass: concordance among organismal groups and the effects of environmental variables. Biodiversity and Conservation 14: 961–980.

    Article  Google Scholar 

  71. Vašutová, M., D. Dvořák & M. Beran, 2013. Rare macromycetes from raised bogs in the Hrubý Jeseník Mts. (Czech Republic). Czech Mycology 65: 45–67.

    Google Scholar 

  72. Vohník, M., Z. Burdíková, J. Albrechtová & M. Vosátka, 2009. Testate amoebae (Arcellinida and Euglyphida) vs. ericoid mycorrhizal and DSE fungi: a possible novel interaction in the mycorrhizosphere of ericaceous plants? Microbial Ecology 57: 203–214.

    PubMed  Article  Google Scholar 

  73. Winterhoff, W. (ed.), 1992. Fungi in vegetation science. Handbook of Vegetation Science 19: 1–256.

Download references

Acknowledgements

The research was funded by Czech Science Foundation, the project no. GA 206/08/0389, student′s project PrF-2013-003 at Palacký University and it was performed under an institutional support of Masaryk University and Academy of Sciences of the Czech Republic (long-term development project RVO 67985939). We give thanks to many colleagues who participated in the field survey or laboratory work, including Kamil Rybníček, Lenka Pavlů, Věra Kavalcová, Martin Kočí, Štěpánka Králová, Miroslav Beran, Helena Deckerová, Markéta Chlebická, Martin Kříž, Daniel Dvořák, Petra Mazalová, Zuzana Rutová, Klára Bergová, Radek Hnilica, Jana Jiroušková, Marcela Růžičková and Stanislav Němejc. We thank to Ondřej Hájek for the map preparation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aloisie Poulíčková.

Additional information

Handling editor: Judit Padisak

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 38 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hájek, M., Poulíčková, A., Vašutová, M. et al. Small ones and big ones: cross-taxon congruence reflects organism body size in ombrotrophic bogs. Hydrobiologia 726, 95–107 (2014). https://doi.org/10.1007/s10750-013-1754-8

Download citation

Keywords

  • Biomonitoring
  • Fungi
  • Microorganisms
  • Multi-proxy
  • Surrogate
  • Species richness