Hydrobiologia

, Volume 726, Issue 1, pp 53–63 | Cite as

Distribution and ecological preferences of noble crayfish in the Carpathian Danube basin: biogeographical insights into the species history

Primary Research Paper

Abstract

Widespread across Europe, the noble crayfish Astacus astacus has experienced many negative ecological and anthropogenic influences, mostly in western and northern Europe. We address the distribution and ecological affinities of this species in the geographical context of the Carpathian Danube basin, an area where these influences were limited and the distribution picture is expectedly a natural one. The main statistical method used to reveal the environmental factors that influence the distribution of noble crayfish was boosted regression trees. Crayfish presence was found to be favoured by a combination of a high percentage of riverbank tree coverage, moderate altitude and slow water velocity, to the detriment of dissolved oxygen. These results reveal the species requirements for river sectors offering the best long-term stability. An eastwards decrease in the probability of occurrence of noble crayfish populations was observed along the Danube tributaries. We hypothesise that this pattern is given by the early colonisation routes originating from southern Danube tributaries, after the Pleistocene glaciations. Including spatiality along with ecological data in the statistical models, this study comes to support the fact that a comprehensive approach can provide a better understanding of a species distribution pattern.

Keywords

Astacus astacus Boosted regression trees Early colonisation Ecological preferences Indigenous crayfish species Riverbanks stability 

References

  1. Albrecht, H., 1983. Besiedlungsgeschichte und ursprünglich holozane verbreitung der Europäischen Flusskrebse. Spixiana 6: 61–77.Google Scholar
  2. Băcescu, M. C., 1967. Fauna Republicii Socialiste România, Crustacea, Decapoda (The fauna of Romanian Socialist Republic, Crustacea, Decapoda). Academic Publishing House, Bucharest. (in Romanian).Google Scholar
  3. Bubb, D. H., T. J. Thom & M. C. Lucas, 2006. Movement, dispersal and refuge use of co-occurring introduced and native crayfish. Freshwater Biology 51: 1359–1368.CrossRefGoogle Scholar
  4. Capinha, C., E. R. Larson, E. Tricarico, J. D. Olden & F. Gherardi, 2013. Effects of climate change, invasive species, and disease on the distribution of native European crayfishes. Conservation Biology 27: 731–740.PubMedCrossRefGoogle Scholar
  5. Council of Europe, 1979. Convention on the Conservation of European Wildlife and Natural Habitats. Bern.Google Scholar
  6. Council of Europe, 1992. Council Directive 92/43/EEC of 21 May 1992 on the Conservation of Natural Habitats and of Wild Fauna and Flora. European Commission, Brussels.Google Scholar
  7. Diéguez-Uribeondo, J., 2006. Pathogens, Parasites and Ectocommensals. In Souty-Grosset, C., D. M. Holdich, P. Y. Noël, J. D. Reynolds & P. Haffner (eds), Atlas of Crayfish in Europe. Patrimoines Naturels 64, Muséum National d’Histoire Naturelle, Paris: 131–149.Google Scholar
  8. Elith, J., C. H. Graham, R. P. Anderson, M. Dudik, S. Ferrier, A. Guisan, R. J. Hijmans, F. Huettmann, J. R. Leathwick, A. Lehmann, J. Li, L. G. Lohmann, B. A. Loiselle, G. Manion, C. Moritz, M. Nakamura, Y. Nakazawa, J. M. Overton, A. T. Peterson, S. J. Phillips, K. Richardson, R. Scachetti-Pereira, R. E. Schapire, J. Soberon, S. Williams, M. S. Wisz & N. E. Zimmermann, 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129–151.CrossRefGoogle Scholar
  9. Elith, J., J. R. Leathwick & T. Hastie, 2008. A working guide to boosted regression trees. Journal of Animal Ecology 77: 802–813.PubMedCrossRefGoogle Scholar
  10. Filipová, L., A. Petrusek, K. Matasová, C. Delaunay & F. Grandjean, 2013. Prevalence of the crayfish plague pathogen Aphanomyces astaci in populations of the signal crayfish Pacifastacus leniusculus in France: evaluating the threat to native crayfish. PLoS ONE 8: e70157.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Gallardo, B. & D. C. Aldridge, 2013. Evaluating the combined threat of climate change and biological invasions on endangered species. Biological Conservation 160: 225–233.CrossRefGoogle Scholar
  12. Gherardi, F., L. Aquiloni, J. Diéguez-Uribeondo & E. Tricarico, 2011. Managing invasive crayfish: is there a hope? Aquatic Sciences 73: 185–200.CrossRefGoogle Scholar
  13. Gross, R., S. Palm, K. Kõiv, T. Prestegaard, J. Jussila, T. Paaver, J. Geist, H. Kokko, A. Karjalainen & L. Edsman, 2013. Microsatellite markers reveal clear geographic structuring among threatened noble crayfish (Astacus astacus) populations in Northern and Central Europe. Conservation Genetics 15: 809–821.CrossRefGoogle Scholar
  14. Hewitt, G. M., 1996. Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society 58: 247–276.Google Scholar
  15. Hijmans, R. J., S. Phillips, J. Leathwick & J. Elith, 2012. R package “dismo” version 0.7-23. http://cran.r-project.org/web/packages/dismo.
  16. Holdich, D. M., 2002. Distribution of crayfish in Europe and some adjoining countries. Bulletin Français de la Pêche et de la Pisciculture 367: 611–650.CrossRefGoogle Scholar
  17. Holdich, D. M., P. Haffner & P. Y. Noël, 2006. Species files. In Souty-Grosset, C., D. M. Holdich, P. Y. Noël, J. D. Reynolds & P. Haffner (eds), Atlas of crayfish in Europe. Patrimoines Naturels 64, Muséum National d’Histoire Naturelle, Paris: 66–71.Google Scholar
  18. Holdich, D. M., J. D. Reynolds, C. Souty-Grosset & P. J. Sibley, 2009. A review of the ever increasing threat to European crayfish from non-indigenous crayfish species. Knowledge and Management of Aquatic Ecosystems 394–395: 11.CrossRefGoogle Scholar
  19. IUCN, 2013. IUCN Red List of Threatened Species. Version 2013.1. Available at: www.iucnredlist.org.
  20. Jorgensen, B. B. & N. P. Revsbech, 1985. Diffusive boundary layers and the oxygen uptake of sediments and detritus. Limnology and Oceanography 30: 111–122.CrossRefGoogle Scholar
  21. Kadlecová, K., M. Bílý & M. Maciak, 2012. Movement patterns of the co-occurring species Astacus astacus (noble crayfish) and Austropotamobius torrentium (stone crayfish). Fundamental and Applied Limnology 180: 351–360.CrossRefGoogle Scholar
  22. Klobučar, G. I. V., M. Podnar, M. Jelić, D. Franjević, M. Faller, A. Štambuk, S. Gottstein, V. Simić & I. Maguire, 2013. Role of the Dinaric Karst (western Balkans) in shaping the phylogeographic structure of the threatened crayfish Austropotamobius torrentium. Freshwater Biology 58: 1089–1105.CrossRefGoogle Scholar
  23. Knighton, A. D., 1999. Downstream variation in stream power. Geomorphology 29: 293–306.CrossRefGoogle Scholar
  24. Kozák, P., L. Füreder, A. Kouba, J. D. Reynolds & C. Souty-Grosset, 2011. Current conservation strategies for European crayfish. Knowledge and Management of Aquatic Ecosystems 401: 01.CrossRefGoogle Scholar
  25. Kozubíková, E., T. Vrålstad, L. Filipová & A. Petrusek, 2011. Re-examination of the prevalence of Aphanomyces astaci in North American crayfish populations in Central Europe by TaqMan MGB real-time PCR. Diseases of Aquatic Organisms 97: 113–125.PubMedCrossRefGoogle Scholar
  26. Kušar, D., A. Vrezec, M. Ocepek & V. Jenčič, 2013. Crayfish plague (Aphanomyces astaci) in wild crayfish populations in Slovenia: first report of persistent infection in stone crayfish Austropotamobius torrentium population. Diseases of Aquatic Organisms 103: 157–169.PubMedCrossRefGoogle Scholar
  27. Leathwick, J. R., J. Elith, W. L. Chadderton, D. Rowe & T. Hastie, 2008. Dispersal, disturbance and the contrasting biogeographies of New Zealand’s diadromous and non-diadromous fish species. Journal of Biogeography 35: 1481–1497.CrossRefGoogle Scholar
  28. Lozán, J. L., 2000. On the threat to the European Crayfish: a contribution with the study of the activity behaviour of four crayfish species (Decapoda: Astacidae). Limnologica 30: 156–161.CrossRefGoogle Scholar
  29. Malakauskas, D. M., S. J. Willson, M. A. Wilzbach & N. A. Som, 2013. Flow variation and substrate type affect dislodgement of the freshwater polychaete, Manayunkia speciosa. Freshwater Science 32: 862–873.CrossRefGoogle Scholar
  30. OIE, 2009. Manual of diagnostic tests for aquatic animals. Chapter 2.2.1. Crayfish plague (Aphanomyces astaci). http://www.oie.int.
  31. Oppel, S., A. Meirinho, I. Ramírez, B. Gardner, A. F. O’Connell, P. I. Miller & M. Louzao, 2012. Comparison of five modelling techniques to predict the spatial distribution and abundance of seabirds. Biological Conservation 156: 94–104.CrossRefGoogle Scholar
  32. Pârvulescu, L., O. Pacioglu & C. Hamchevici, 2011. The assessment of the habitat and water quality requirements of the stone crayfish (Austropotamobius torrentium) and noble crayfish (Astacus astacus) species in the rivers from the Anina Mountains (SW Romania). Knowledge and Management of Aquatic Ecosystems 401: 03.CrossRefGoogle Scholar
  33. Pârvulescu, L., A. Schrimpf, E. Kozubíková, S. Cabanillas Resino, T. Vrålstad, A. Petrusek & R. Schulz, 2012. Invasive crayfish and crayfish plague on the move: first detection of the plague agent Aphanomyces astaci in the Romanian Danube. Diseases of Aquatic Organisms 98: 85–94.PubMedCrossRefGoogle Scholar
  34. Pârvulescu, L. & C. Zaharia, 2013. Current limitations of the stone crayfish distribution in Romania: implications for its conservation status. Limnologica 43: 143–150.CrossRefGoogle Scholar
  35. Pârvulescu, L., C. Zaharia, A. Satmari & L. Drăguţ, 2013. Is the distribution pattern of the stone crayfish in the Carpathians related to karstic refugia from Pleistocene glaciations? Freshwater Science 32: 1410–1419.CrossRefGoogle Scholar
  36. R Development Core Team, 2005. R: a language and environment for statistical computing, reference index version 2.14.0. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org.
  37. Schrimpf, A., H. K. Schulz, K. Theissinger, L. Pârvulescu & R. Schulz, 2011. The first large-scale genetic analysis of the vulnerable noble crayfish Astacus astacus reveals low haplotype diversity of Central European populations. Knowledge and Management of Aquatic Ecosystems 401: 35.CrossRefGoogle Scholar
  38. Schrimpf, A., L. Pârvulescu, D. Copila-Ciocianu, A. Petrusek & R. Schulz, 2012. Crayfish plague pathogen detected in the Danube Delta—a potential threat to freshwater biodiversity in southeastern Europe. Aquatic Invasions 7: 503–510.CrossRefGoogle Scholar
  39. Schrimpf, A., T. Maiwald, T. Vrålstad, H. K. Schulz, P. Śmietana & R. Schulz, 2013. Absence of the crayfish plague pathogen (Aphanomyces astaci) facilitates coexistence of European and American crayfish in central Europe. Freshwater Biology 58: 1116–1125.CrossRefGoogle Scholar
  40. Schulz, H. K., P. Śmietana & R. Schulz, 2002. Crayfish occurrence in relation to land-use properties: implementation of a geographic information system (GIS). Bulletin Français de la Pêche et de la Pisciculture 367: 861–872.CrossRefGoogle Scholar
  41. Schulz, H. K., P. Śmietana & R. Schulz, 2006. Estimating the human impact on populations of the endangered noble crayfish (Astacus astacus L.) in north-western Poland. Aquatic Conservation: Marine and Freshwater Ecosystems 16: 223–233.CrossRefGoogle Scholar
  42. Trontelj, P., Y. Machino & B. Sket, 2005. Phylogenetic and phylogeographic relationships in the crayfish genus Austropotamobius inferred from mitochondrial COI gene sequences. Molecular Phylogenetics and Evolution 34: 212–226.PubMedCrossRefGoogle Scholar
  43. Viljamaa-Dirks, S., S. Heinikainen, M. Nieminen, P. Vennerström & S. Pelkonen, 2011. Persistent infection by crayfish plague Aphanomyces astaci in a noble crayfish population—a case report. Bulletin of the European Association of Fish Pathologists 31(5): 182–188.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Biology-Chemistry, Faculty of Chemistry, Biology, GeographyWest University of TimisoaraTimisoaraRomania
  2. 2.Advanced Environmental Research LaboratoriesWest University of TimisoaraTimisoaraRomania
  3. 3.Department of Mathematics, Faculty of Mathematics and Computer ScienceWest University of TimisoaraTimisoaraRomania

Personalised recommendations