Hydrobiologia

, Volume 726, Issue 1, pp 13–23 | Cite as

Urban stream denitrifier communities are linked to lower functional resistance to multiple stressors associated with urbanization

  • Si-Yi Wang
  • Emily S. Bernhardt
  • Justin P. Wright
Primary Research Paper

Abstract

The microbial communities in urban stream ecosystems are subject to complex combinations of stressors. These same microbial communities perform the critical ecosystem service of removing excess reactive nitrogen. We asked whether the denitrifying microbial communities in urban streams differ in their functional resistance to common urban stressors from communities from nonurban streams. We exposed inocula from a highly polluted urban stream and a nearby nonurban stream to three different stressors, added alone and in combination. Stressors represent the common urban impacts of thermal pollution (10°C), trace metal exposure (ionic silver (Ag+)), and salinization (addition of NaCl). We used reduction in nitrite (NO2) concentrations under anaerobic conditions as a proxy for denitrification potential. Nonurban stream denitrifying microbial communities were more diverse than their urban counterparts. Denitrification potential for both communities was unaffected by exposure to any individual stressor. However, denitrification rates by the less diverse urban microbial inoculum decreased in response to combined heavy metal and salt stress, while nonurban communities were unaffected. These findings support the hypothesis that higher diversity may confer greater functional resistance in response to multiple stressors and do not support the idea that stressful conditions select for communities that are functionally resilient to multiple stressors.

Keywords

Denitrification Disturbance Diversity Resistance Stress Urbanization 

Supplementary material

10750_2013_1747_MOESM1_ESM.docx (14 kb)
Supplementary material 1 (DOCX 13 kb)

References

  1. Allison, S. D. & J. B. H. Martiny, 2008. Resistance, resilience, and redundancy in microbial communities. Proceedings of the National Academy of Sciences 105: 11512–11519.CrossRefGoogle Scholar
  2. Anderson, M. J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 32–46.Google Scholar
  3. Blackwood, C. B., D. Hudleston, D. R. Zak & J. S. Buyer, 2007. Interpreting ecological diversity indices applied to terminal restriction fragment length polymorphism data: insights from simulated microbial communities. Applied and Environmental Microbiology 73: 5276–5283.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Blanck, H., S. Wangberg & S. Molander, 1988. Pollution-induced community tolerance – a new ecotoxicological tool. In Cairs Jr., J. & J. R. Pratt (eds), Functional Testing of Aquatic Biota for Estimating Hazards of Chemicals. ASTM STP 988, Philadelphia: 219–230.CrossRefGoogle Scholar
  5. Braker, G., A. Fesefeldt & K. P. Witzel, 1998. Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Applied and Environmental Microbiology 64: 3769–3775.PubMedCentralPubMedGoogle Scholar
  6. Clement, J. L. & P. S. Jarrett, 1994. Antibacterial silver. Metal-Based Drugs 1: 467–582.PubMedCentralPubMedCrossRefGoogle Scholar
  7. Clements, W. H., M. L. Brooks, D. R. Kashian & R. E. Zuellig, 2008. Changes in dissolved organic material determine exposure of stream benthic communities to UV-B radiation and heavy metals: implications for climate change. Global Change Biology 14(9): 2201–2214.CrossRefGoogle Scholar
  8. Csonka, L. N., 1989. Physiological and genetic responses of bacteria to osmotic stress. Microbiological Reviews 53: 121–147.PubMedCentralPubMedGoogle Scholar
  9. Culman, S., R. Bukowski, H. Gauch, H. Cadillo-Quiroz & D. Buckley, 2009. T-REX: software for the processing and analysis of T-RFLP data. BMC Bioinformatics 10: 171.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Enwall, K., I. N. Throback, M. Stenberg, M. Soderstrom & S. Hallin, 2010. Soil resources influence spatial patterns of denitrifying communities at scales compatible with land management. Applied and Environmental Microbiology 76: 2243–2250.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Fabrega, J., S. N. Luoma, C. R. Tyler, T. S. Galloway & J. R. Lead, 2011. Silver nanoparticles: behaviour and effects in the aquatic environment. Environment International 37: 517–531.PubMedCrossRefGoogle Scholar
  12. Fierer, N., J. P. Schimel & P. A. Holden, 2003. Variations in microbial community composition through two soil depth profiles. Soil Biology and Biochemistry 35: 167–176.CrossRefGoogle Scholar
  13. Fierer, N., M. A. Bradford & R. B. Jackson, 2007. Toward an ecological classification of soil bacteria. Ecology 88(6): 1354–1364.PubMedCrossRefGoogle Scholar
  14. Gadd, G. M. & A. J. Griffiths, 1977. Microorganisms and heavy metal toxicity. Microbial Ecology 4: 303–317.PubMedCrossRefGoogle Scholar
  15. Gobel, P., C. Dierkes & W. C. Coldewey, 2007. Storm water runoff concentration matrix for urban areas. Journal of Contaminant Hydrology 91: 26–42.PubMedCrossRefGoogle Scholar
  16. Johansson, M., M. Pell & J. Stenstrom, 1998. Kinetics of substrate-induced respiration (SIR) and denitrification: applications to a soil amended with silver. Ambio 40: 40–44.Google Scholar
  17. Kaushal, S. S., P. M. Groffman, G. E. Likens, K. T. Belt, W. P. Stack, V. R. Kelly, L. E. Band & G. T. Fisher, 2005. Increased salinization of fresh water in the northeastern United States. Proceedings of the National Academy of Sciences of the United States of America 102: 13517–13520.PubMedCentralPubMedCrossRefGoogle Scholar
  18. Lok, C. N., C. M. Ho, R. Chen, Q. Y. He, W. Y. Yu, H. Sun, P. K. Tam, J. F. Chiu & C. M. Che, 2006. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. Journal of Proteome Research 5: 916–924.PubMedCrossRefGoogle Scholar
  19. McCann, K. S., 2000. The diversity-stability debate. Nature 405: 228–233.PubMedCrossRefGoogle Scholar
  20. Mulholland, P. J., A. M. Helton, G. C. Poole, R. O. Hall, S. K. Hamilton, B. J. Peterson, J. L. Tank, L. R. Ashkenas, L. W. Cooper, C. N. Dahm, W. K. Dodds, S. E. G. Findlay, S. V. Gregory, N. B. Grimm, S. L. Johnson, W. H. McDowell, J. L. Meyer, H. M. Valett, J. R. Webster, C. P. Arango, J. J. Beaulieu, M. J. Bernot, A. J. Burgin, C. L. Crenshaw, L. T. Johnson, B. R. Niederlehner, J. M. O’Brien, J. D. Potter, R. W. Sheibley, D. J. Sobota & S. M. Thomas, 2008. Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature 452(7184): 202–205.Google Scholar
  21. Naeem, S. & S. B. Li, 1997. Biodiversity enhances ecosystem reliability. Nature 390(6659): 507–509.CrossRefGoogle Scholar
  22. Oskanen, J., F. G. Blanchet, R. Kindt, et al., 2010. Vegan: community ecology package. R package version 1: 17.Google Scholar
  23. Paine, R. T., M. J. Tegner & E. A. Johnson, 1998. Compounded perturbations yield ecological surprises. Ecosystems 1: 535–545.CrossRefGoogle Scholar
  24. Paul, M. J. & J. L. Meyer, 2001. Streams in the urban landscape. Annual Review of Ecology and Systematics 32: 333–365.CrossRefGoogle Scholar
  25. Peterson, B. J., W. M. Wollheim, P. J. Mulholland, J. R. Webster, J. L. Meyer, J. L. Tank & E. Marti, 2001. Control of nitrogen export from watersheds by headwater streams. Science 292: 86–90.PubMedCrossRefGoogle Scholar
  26. Philippot, L. & S. Hallin, 2005. Finding the missing link between diversity and activity using denitrifying bacteria as a model functional community. Current Opinion in Microbiology 8: 234–239.PubMedCrossRefGoogle Scholar
  27. Poolman, B. & E. Glaasker, 1998. Regulation of compatible solute accumulation in bacteria. Molecular Microbiology 29: 397–407.PubMedCrossRefGoogle Scholar
  28. Rosenberg, D. & V. H. Resh (eds), 1993. Freshwater Biomonitoring and Benthic Macroinvertebrates. Chapman and Hall, New York.Google Scholar
  29. Seo, D. C., K. Yu & R. D. Delaune, 2008. Influence of salinity level on sediment denitrification in a Louisiana estuary receiving diverted Mississippi River water. Archives of Agronomy and Soil Science 54: 249–257.CrossRefGoogle Scholar
  30. Somers, K. A., E. S. Bernhardt, J. B. Grace, B. A. Hassett, E. B. Sudduth, S. Y. Wang & D. L. Urban, 2013. Streams in the urban heat island: spatial and temporal variability in temperature. Freshwater Science 32(1): 309–326.CrossRefGoogle Scholar
  31. Sousa, W. P., 1984. The role of disturbance in natural communities. Annual Review of Ecology and Systematics 15: 353–391.CrossRefGoogle Scholar
  32. Sudduth, E. B., B. A. Hassett, P. Cada & E. S. Bernhardt, 2011. Testing the field of dreams hypothesis: functional responses to urbanization and restoration in stream ecosystems. Ecological Applications 6: 1972–1988.CrossRefGoogle Scholar
  33. Throback, I. N., M. Johansson, M. Rosenquist, M. Pell, M. Hansson & S. Hallin, 2007. Silver (Ag+) reduces denitrification and induces enrichment of novel nirK genotypes in soil. FEMS Microbiology Letters 270: 189–194.PubMedCrossRefGoogle Scholar
  34. Tsuzuki, M., O. V. Moskvin, M. Kuribayashi, K. Sato, S. Retamal, M. Abo, J. Zeilstra-Ryalls & M. Gomelsky, 2011. Salt stress-induced changes in the transcriptome, compatible solutes, and membrane lipids in the facultatively phototrophic bacterium Rhodobacter sphaeroides. Applied and Environmental Microbiology 29: 397–407.Google Scholar
  35. Vinebrooke, R. D., K. L. Cottingham, J. Norberg, M. Scheffer, S. I. Dodson, S. C. Maberly & U. Sommer, 2004. Impacts of multiple stressors on biodiversity and ecosystem functioning: the role of species co-tolerance. Oikos 104: 451–457.CrossRefGoogle Scholar
  36. Violin, C. R., P. Cada, E. B. Sudduth, B. A. Hassett, D. L. Penrose & E. S. Bernhardt, 2011. Effects of urbanization and urban stream restoration on the physical and biological structure of stream ecosystems. Ecological Applications 21(6): 1932–1949.PubMedCrossRefGoogle Scholar
  37. Walsh, C. J., A. H. Roy, J. W. Feminella, P. D. Cottingham, P. M. Groffman & R. P. Morgan, 2005. The urban stream syndrome: current knowledge and the search for a cure. Journal of the North American Benthological Society 24: 706–723.Google Scholar
  38. West, A. & G. Sparling, 1986. Modifications to the substrate-induced respiration method to permit measurement of microbial biomass in soils of differing water contents. Journal of Microbiological Methods 5: 177–189.CrossRefGoogle Scholar
  39. White, P., 1979. Pattern, process and natural disturbance in vegetation. Botanical Review 45: 229–299.CrossRefGoogle Scholar
  40. Wittebolle, L., M. Marzorati, L. Clement, A. Balloi, D. Daffonchio, K. Heylen, P. De Vos, W. Verstraete & N. Boon, 2009. Initial community evenness favours functionality under selective stress. Nature 458(7238): 623–626.PubMedCrossRefGoogle Scholar
  41. Yachi, S. & M. Loreau, 1999. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proceedings of the National Academy of Sciences of the United States of America 96(4): 1463–1468.PubMedCentralPubMedCrossRefGoogle Scholar
  42. Ye, Y., L. Zhang, F. Hao, J. Zhang, Y. Wang & H. Tang, 2012. Global metabolomic responses of Escherichia coli to heat stress. Journal of Proteome Research 11: 2559–2566.PubMedCrossRefGoogle Scholar
  43. Yura, T., H. Nagai & H. Mori, 1993. Regulation of the heat-shock response in bacteria. Annual Review of Microbiology 47: 321–350.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Si-Yi Wang
    • 1
  • Emily S. Bernhardt
    • 1
  • Justin P. Wright
    • 1
  1. 1.Biology DepartmentDuke UniversityDurhamUSA

Personalised recommendations